《圆的认识》教学设计【最新6篇】
《圆的认识》教学设计 篇一
教学目标:
1. 让学生了解圆的定义、性质和特点;
2. 培养学生观察和总结的能力;
3. 培养学生的合作学习能力。
教学重点:
圆的定义、性质和特点。
教学难点:
学生对圆的性质的理解和应用。
教学准备:
1. 教师准备好课件和教学工具,如白板、彩色粉笔等;
2. 学生准备好课本、笔和纸。
教学过程:
Step 1 引入
1. 教师用课件展示圆的图片,引导学生观察并描述圆的形状;
2. 教师提问:“你们对圆有什么了解?”学生回答。
Step 2 学习
1. 教师出示圆的定义:“圆是由平面内的一点到平面内距离不变的点的轨迹。”并解释定义中的关键词;
2. 教师讲解圆的性质和特点,如圆的直径、半径、弦、弧等;
3. 教师引导学生观察和总结圆的性质和特点,学生通过讨论和合作学习,归纳出圆的性质和特点。
Step 3 实践
1. 教师出示一些实际问题,让学生运用圆的性质和特点进行解答;
2. 学生分组合作,解决实际问题,讨论并汇报结果;
3. 教师评价学生的表现,给予肯定和指导。
Step 4 总结
1. 教师和学生一起总结本节课学到的内容,回答问题:“圆的定义是什么?圆的性质有哪些?”;
2. 学生记录本节课的要点和所学内容。
Step 5 作业
1. 学生完成课后习题,巩固所学知识;
2. 学生根据所学内容,设计一道关于圆的问题,交给教师。
《圆的认识》教学设计 篇二
教学目标:
1. 引导学生发现圆在生活中的应用;
2. 提高学生的观察能力和创新思维;
3. 培养学生的合作学习能力。
教学重点:
圆在生活中的应用。
教学难点:
学生的观察能力和创新思维。
教学准备:
1. 教师准备好课件和教学工具,如白板、彩色粉笔等;
2. 学生准备好课本、笔和纸。
教学过程:
Step 1 引入
1. 教师用课件展示圆在生活中的应用的图片,引导学生发表观点和想法;
2. 教师提问:“你们在生活中还能想到哪些圆的应用?”学生回答。
Step 2 探究
1. 教师出示一些实际问题,让学生观察并分析其中的圆;
2. 学生分组合作,讨论并总结圆在生活中的应用;
3. 学生汇报结果,教师引导学生进行讨论和思考。
Step 3 创新
1. 教师出示一些生活中的场景,让学生设计出符合场景的圆的应用;
2. 学生分组合作,设计圆在给定场景中的应用,并用绘图软件或手绘方式呈现;
3. 学生互相交流和评价设计的合理性和创新性。
Step 4 总结
1. 教师和学生一起总结本节课学到的内容,回答问题:“圆在生活中的应用有哪些?”;
2. 学生记录本节课的要点和所学内容。
Step 5 作业
1. 学生根据所学内容,写一篇关于圆在生活中的应用的作文;
2. 学生互相交流和评价作文的内容和创意。
《圆的认识》教学设计 篇三
教学目标:
一、知识与技能
1、使学生进一步掌握圆的特征。
2、使学生理解直径与半径的关系,理解并掌握在同一个圆里,直径等于半径的2倍,半径等于直径的二分之一。
二、数学思考与问题解决
能够运用本节所学习的知识从数学的角度解释生活中有关圆的现象。
三、情感态度
在探索与发现的过程中,激发学生学习数学的兴趣,感受数学在生活中的魅力。
教学重点:
直径与半径的关系。
教学难点:
圆是轴对称图形。
教学方法:
例证法、自主操作。
教学准备:
投影
教学过程:
一、 用不同的方法找圆心
(课前让学生先在家里实践一下)
二、 圆是轴对称图形
1、 引导学生回忆,前面我们已学过哪些轴对称图形?(什么是对称图形)它们的对称轴各有几条?
2、 圆是轴对称图形
(1)让学生按直径对折看是否重合?(大小图形多折几个)得出了结论。
(2)直径是圆的对称轴,有无数条。
(设计意图:充分开展自主探究活动,让学生在独立操作和思考的基础上表达自己的观点和思考的过程,鼓励更多的学生参与交流。)
三、 半径与直径的关系
(1) 让学生各自量一量自已所画的圆中的半径与直径各是多少?它们之间有什么关系?
(2) 小结:在同一圆中,所有的半径相等。在同一圆中所有的直径相等。
同一圆中,直径是半径的2倍,半径等于直径的二分之一。
四、 练习
1、 老师出题学生口答
2、 填表
3、 画圆的对称轴
五、 总结
六、 作业
学生操作
教学反思:
本次课主要是学习圆的轴对称性,以便更好地理解圆的基本性质。注重学生动手能力和思考能力的培养。而圆的旋转对称性不作重点要求。安排“做一做”只是使学生对圆的旋转对称性有个初步的感受而已。对于悟性高、接受能力强的学生可以拓展一下,比如正方形旋转90度,等边三角形旋转120度后与原图形重合;正方形旋转一周,与原图形重合4次,等边三角形旋转一周,与原图形重合3次;圆旋转一周与原图形重合无数次。如果以后再上这一节课,我会认真把握时间,充分调动学生的积极性。
《圆的认识》教学设计 篇四
教学内容:
人教版六年级上册教材第57-58页内容和“做一做”及第60页的第1—5题。
教学目标:
1、认识圆,掌握圆的特征,理解直径与半径的关系。
2、会使使用工具画圆。
3、培养观察、分析、综合、概括及动手操作能力。
教学重点:
通过动手操作,理解直径与半径的关系,认识圆.。
教学难点:
画圆的方法,认识圆的特征。
教学准备:
投影仪、课件等
教学过程:
一、创设情境,引入复习
1、我们以前学过的平面图形有哪些?这些图形都是用什么线围成的?
简单说说下面这些图形的特征?
长方形正方形平行四边形三角形梯形
2、圆是用什么线围成的?举例:生活中有哪些圆形的物体?
3、出示圆片图形:
(1)圆是用什么线围成的?(圆是一种曲线图形)
(2)举例:生活中有哪些圆形的物体?(钟面、车轮、水杯、碗口等)
【设计意图:通过复习旧知,找出生活中的圆形物体,让学生进一步感受数学来源于生活,提高其学习的兴趣。】
二、探索新知
(一)认识圆心、直径和半径。
1、教师课件出示自学提纲,自学课本p56-57
(1)生拿出准备好的一个圆纸片。
(2)课本第58页动手折一折。
折过2次后,你发现了什么?再折出另外两条折痕呢?
(3)指出纸片的圆心、直径和半径。并在剪下的圆中分别标出。
2、自学,教师巡回指点,发现难点。
3、教师在黑板上画一个圆,让个别学生上台指出。
4、小组讨论:
(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?
(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?
(3)想一想:在同一个圆中有多少半径、多少直径?直径和半径的长度有什么关系?
不在同一个圆中呢?
(4)小结:在同一个圆里,有无数条直径,且所有的直径都相等。
在同一个圆里,有无数条半径,且所有的半径都相等。
5、直径与半径的关系。
(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。得出结论:在同一个圆里,直径是半径的2倍,半径是直径的一半。
板书:
①在同一个圆里,有无数条直径,且所有的直径都相等。
②在同一个圆里,有无数条半径,且所有的半径都相等。
③在同一个圆里,d=2r;
(2)第58页“做一做”第1题。
【设计意图:学生在老师的精心安排下积极参与到学习的活动中,通过学生折一折、量一量、议一议等活动,让学生自己认识了圆的各部分名称,掌握了圆的特征。体现了学生的自主学习的能力。】
(二)画圆。
1、介绍圆规的各部分名称及使用方法。
2、让个别学生说出老师刚才是如何画圆的。
学生自学课本第57页并小结出画圆的步骤和方法。
3、小组内画r=3cm的圆。组长检查评比,然后全班评比。
4、完成第58页“做一做”第2题。
【设计意图:让学生仍然采用自学为主,让他们自己动手探索画圆的方法,充分尊重其
主动性,让他们自己在相互的交流中学会了画圆,掌握了画圆的技巧。】
三、巩固练习
1、判断,并说明理由。
(1)半径的长短决定圆的大小。()
(2)圆心决定圆的位置。()
(3)直径是半径的2倍。()
(4)圆的半径都相等。()
2、请试着用圆规画几个大小不同的圆。你能发现什么?说一说画圆的步骤和方法。
画一个半径是2厘米的圆。再画一个直径是5厘米的圆。
3、完成第60页的第2、3题。
生独立完成后,再由学生自己讲评。
4、思考题:在操场如何画半径是5米的大圆?(即第60页的第4题)
学生独立完成教师巡回查看,发现疑难。
小组内评比,纠错。组长组织解决存在问题
5、思考:圆和以前学过的平面图形有什么不同?
四、总结梳理
这节课你学到了什么,对自己的课堂表现还有什么提议吗?觉得在哪些地方还需改进。
作业:完成第60页的第1、5题。
板书设计:
圆的认识
①在同一个圆里,有无数条直径,且所有的直径都相等。
②在同一个圆里,有无数条半径,且所有的半径都相等。
③在同一个圆里,d=2r;
《圆的认识
》教学设计 篇3
教学目标:
1、让学生在操作、体验中认识圆,知道圆各部分的名称,掌握圆的特征,能正确画圆,初步利用圆的知识解释一些日常生活现象。
2、通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念,发展数学思考。
3、通过学习,进一步体验图形与生活的联系,感受平面图形的学习价值,提高学生对数学的好奇心与求知欲,体验数学活动的意义和作用。
教学重点:
掌握圆的各部分名称,圆的基本特征,学会用圆规画圆。
教学难点:
归纳圆的特征。
教学准备:
老师准备、教具圆规,学生每人准备一张白纸、一把圆规、两个大小不一的圆片。
教学过程:
一、溯源生活,导入新课
1.欣赏,走进圆的世界。
师:老师给同学们带来了一些图片,我们一起来看看吧。
师:这些图片中有什么相同之处?
(都是圆形物体。)
2.揭示课题。
今天这节课我们就一起走进圆的世界去探寻圆的奥秘。板书课题:圆的认识
3.师:生活中很多物体的面是圆形的,同学们能说说你们在哪儿看到过圆吗?
让学生说一说。
二、操作体验,感悟特征
1、教学画圆
师:说了这么多的圆,你想不想亲自动手画一个圆?(想)
师:现在请同学们利用手中的工具画一个圆,会吗?在白纸上试着画一个。
学生动手画圆。
引导学生交流所画的圆,并说说是怎样画的。
师:你能告诉老师用什么画的吗?有不是用圆规的画的吗?
师:你能告诉我为什么你们都喜欢用圆规画呢?
小结:用圆规画得圆很标准而且方便。
师:现在请同学们用圆规在纸上画一个圆。
师巡视,找出失败的作品。
师:同学们,你们觉得这些圆画得怎么样?
师:这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?
(1是没有固定好有针的那个脚;2是两脚之间的距离变化了;3是可能不会旋转;4拿圆规方法不对。)
师:其实同学们发现了没有,刚才你们说得问题就是在画圆的时候应该注意的地方。
师示范画圆。边画边说步骤。
第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)
第二步:把有针尖的一只脚固定在一点上。(板书:定点)
第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)
强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。
师:现在,掌握了这些要求,有没有信心比刚才画得更好?
学生画圆。
师:刚刚老师发现,同学们画的圆有的大有的小,你们知道为什么会这样吗?
(画的时候圆规两脚之间的长度不一样。)
师:现在老师想请同学们画同样大小的圆,你们有办法吗?谁来帮老师想个办法?
师:好,现在我们就把圆规两脚间的距离统一定为4厘米。
师:大家动手画一个。圆我们画好了,但是如果有人要你介绍这个圆,你怎么说呢?
2.教学圆的各部分名称。
(如果有学生说出半径、直径这类的词)师:刚才同学们用到了半径、直径,我们把它写下来好吗?(板书)那么什么是半径、直径呢?下面我们把课本翻到94页,例2下面的一段话会告诉你答案,自学例2下面的一段话。
师:现在你会介绍了吗?什么叫半径呢?(引出下面的教学内容。)
师:那什么是圆的圆心呢?(针尖固定的一点是圆心。)
学生说,教师在黑板上标出。圆心通常用大写字母O表示。
师:圆心有什么作用?它可以确定圆的什么?
师:刚刚同学介绍说半径是连接圆心和圆上任意一点的线段。圆心我们已经知道了,那什么是圆上任意一点呢?你能找一找吗?你会画半径吗?
指名学生上黑板上画半径。其余学生在自己画的圆上画好。
师:半径通常用字母r表示。请同学们在自己的圆上标出。
师:什么是直径?(通过圆心,两端都在圆上的线段。)
师:老师这里在圆上画了一些线段,现在请同学们来帮忙判断是不是直径,可以吗?
师:好,请同学们在自己的圆上画上直径,直径我们可以用字母d表示,请同学们标出。
师:下面老师想考考大家,找出下面圆的直径和半径。(让学生说明是怎样想的。)
3.探究圆的基本特征。
师:我们已经认识了圆的圆心、半径、直径。大家想不想再深入地研究一下圆呢?单单圆心、半径、直径里面就蕴藏着很多知识,你想研究吗?
师:接下来请同学们拿出信封里的圆片,同桌之间一个大圆,一个小圆。请同学们折一折,画一画,量一量,比一比,议一议。相信同学们肯定有精彩的发现。
(1)圆有无数条半径和直径。
师:你是怎么发现的?
学生可能是通过画发现的,也可能是推想的。
(2)在同一个圆里,半径的长度都相等,所有的直径长度都相等。
预设:如果学生没有说是在同一个圆里,那教师就及时追问:你的圆的半径跟你同桌圆里的半径一样长吗?跟老师黑板上画的圆的半径一样长吗?那怎么说更好呢?
师:你是怎样发现的,能说一说吗?
学生说明。有些学生是折的,有些学生是量的。
(3)同一个圆里直径是半径的2倍。
师:你是怎么知道的?
学生可能说是观察到的,也可能是量的。
师:你会用含有字母的式子来表示它们之间的关系吗?
d=2r r=d÷2
师:如果老师告诉你圆的半径或者直径,你能说出它的直径或者半径吗?
师:好,那老师就来考考大家。
(出示练习十七第1题。)
(4)圆是轴对称图形,有无数条对称轴。
师:你是怎么知道的?
师:还有其他发现吗?
师:刚才大家通过自己的努力又发现了圆这么多的特征,看来只要善于观察,善于探索,善于研究,就会有意想不到的收获。
三、巩固练习,深化认识
师:接下来,老师有几个问题想请同学们解答一下,你们愿意吗?
出示判断题
(1)直径长度是半径的'2倍。()
(2)圆心决定圆的位置,半径决定圆的大小。( )
(3)画一个直径4厘米的圆,圆规两脚的距离应该是4厘米。( )
(4)在同一个圆内只可以画100条直径。 ( )
四、走进历史,探索信息
师:今天我们一起认识了圆。其实,早在两千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:圆,一中同长也。你怎么理解这句话?
师:我国古代这一发现要比西方整整早一千多年。说到这里你有什么想法!
师:其实在我们古代对圆的研究远不止这些,有兴趣的同学可以利用课余时间通过网络去了解。现在老师还为大家带来了一个古代的圆,你们认识吗?对了,这是我们古代的太极图,有句话说,太极生两仪,两仪就是我们图上的黑和白,表示阴和阳。谁来说说看这幅图是由什么构成的?
师:原来它是用一个大圆和两个同样大的小圆组成,假如小圆的半径是3厘米,你又能知道哪些信息呢?
师:同学们发现的信息还真不少,只要同学们肯动脑筋,善于联系,在以后的学习中肯定会有更多收获。
五、全课总结
师:在古代我们很早有了圆的发现和研究,在现代圆一直扮演着重要的角色,并一度成为美的使者和化身。接下来我们一起再来欣赏一下关于圆的一些图片。感觉怎么样?美吗?想说点什么吗?
师:的确圆是非常漂亮的.图案,以前有位思想家说过,圆是世界上最美丽的图形。可见这句话不是随便说的,那么其中到底蕴涵了什么深沉的意义呢?这个问题就留给同学们课后思考。相信随着你们学识的增长,会有更多更深的理解。
《圆的认识》教学设计 篇五
教学内容:
三上分数的初步认识
教学目标:
1、使学生结合具体情境初步认识几分之一,能用实际操作的结果表示几分之一,并学会运用直观的方法比较这类分数的大小。
2、使学生认识分数各部分的名称,能正确读、写几分之一这样的简单分数。
3、结合观察、操作、比较等数学活动,引导学生学会和同伴交流数学思考的结果,获得积极的情感体验。
4、使学生体会数学来自生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学过程:
课前谈话:猜老师年龄,说自己的年龄。生活中还有哪里用到数?
1、丁丁和当当在数学活动中也遇到了一些数的问题。
书上图:四个苹果2瓶水
生1:把4个苹果平均分成2份,每份是2个
生2:把2瓶苹果平均分成2份,每份是1个
数学上把物体分得一样多,叫做?(板书:平均分)
把一个蛋糕平均分成2份,每人分得多少?怎样分?
生:切成两半
把一个蛋糕平均分成2份,每一份是这个蛋糕的一半,这一半该用什么样的数来表示?生:二分之一
像二分之一这样的数就是分数。我们这节课一起来认识分数。(板书)
把一个蛋糕平均分成二份,(同步演示分数的书写,分数线、分母、分子)这一份就是这个蛋糕的
1/2,另一份呢?(也是这个蛋糕的1/2)
它指的是谁?
你能说说我们是怎样得到这个蛋糕的1/2的吗?
2、拿一张长方形,先折一折,把它的1/2涂上颜色。
学生涂色作品。
折法不同,为什么涂色的部分都是长方形的1/2呢?
生1:都是一半
生2:都是把长方形平均分成2份,涂色的是其中的一份。
小结:折法不同没关系,只要折的是这个长方形的一半,每一份都是它的1/2。
3、判断:下面哪些图形里的涂色部分是1/2,在()里画“勾”。
小结:无论是一个蛋糕,一个图形,只要把它平均分成二份,每一份就是它的1/2。
4、(1)你还想认识几分之一?
生:1/4、1/8、1/3、1/6……(师板书)
(2)拿一张纸折一折,并用斜线表示出它的几分之一。
汇报:你把这个图形平均分成几份,涂色部分是它的几分之一?
生1:我把它分成8份,涂色部分是它的1/8。
生2:把一个圆形平均分成4份,涂了其中一份,每份是它的1/4。
小组内交流。展示作品:
长方形、正方形、圆形表示的1/4
(3)形状不同,为什么涂色部分都是它的1/4?
生:因为它们都平均分成四份,涂色的是其中的一份。
(4)不同的图形,能表示出相同的分数吗?
(5)相同的图形,能表示出不同的分数吗?(请圆形操作的学生举起)
5、比较分数大小
(1)展示作品:圆形表示的1/2、1/4
比较它们各自涂色的部分,你能说出哪个分数大?
生1:1/4
生2:1/2
1/2表示哪一部分?(一大块)1/4呢?(一小块)中间用什么符号?(小于号)
(2)用完全相同的圆,表示出它的1/8,和1/2、1/4比,想象一下怎么样?(小)
用学生作品验证。
(3)同样大小的长方形、正方形能表示出不同的分数吗?老师给每组中发的图形大小相同,谁表示的分数大?谁表示的分数小呢?组内比较。
6、分数的书写。
(1)师教写1/2。
(2)你能用分数表示下面每个图里的涂色部分吗?(书上练习)
汇报:1/3 1/6 1/91/8
(3)分数各部分的名称怎样的?请生阅读书P98
中间短横,是?(分数线板书)表示平均分
2是?(分母)分母是2表示平均分成?(2份)
1是?(分子)分子是1表示其中的一份。
(4)先看图估一估,再填上合适的分数。(书上题目)
长方形1
1/3先估,课件移动1/3,验证长方形被平均分成3份。
1/6先估,课件移动1/6,验证长方形被平均分成了6份。
你怎么一下子就估对的?有什么窍门?
生1:1/3是下面的2倍。
借助观察比较估计,这是多好的学习方法。
今天所学的'分数和以前学习的1之间有联系吗?
再往下分,可能出现几分之一?
生说。
平均分成的份数越来越多的时候,每一份的大小会越来越(小)
7、下面的画面让你联想到了几分之一?
图:法国国旗(1/3)五角星(1/5)巧克力(1/8)
每一部分都是这个图每人吃一份,可以给几个人吃?形的1/3还能联想到几分之一?
生:1/2师:每人吃一份,可以给几个人吃?生:1/4师:每人吃一份,可以给几个人吃?师:同样一块巧克力,观察的角度不同,得到的分数也就不同。
8、黑板报。《科学天地》、《艺术园地》大约占黑板报版面的几分之一。艺术园地
科学天地
生:《艺术园地》占黑板报版面的1/4
师:版面不是分成了三份吗?
生:把《科学天地》再分,黑板版面就平均分成了四份。
9、瞧,人体中也能找到有趣的分数。
图:一岁现在的我
课件演示把一岁儿童的身长(图)平均分成四份,其中头占身高的1/4
把现在的我的身长(图)平均分成七份,其中头占身高的1/7
估计:八、九岁孩子的头占身高的几分之一?
学生估计
师提供资料:十岁儿童头占身高的六分之一
10、播放:多美滋1+1奶粉广告
东东把一块蛋糕平均分成四份,一看来了八人,刚解决这个问题,又来了第九个人。看广告让你能联想到几分之一?
生:能想到1/4
从哪个画面中联想到1/4?
生:第一幅画面,蛋糕平均分成四份,每人吃到一份
生:能想到1/8
从哪个面画中联想到的1/8?
生:第三、四画面把一个蛋糕平均分成8份,每人吃到一份
生:能想到1/2
这里的1/2是整个蛋糕的1/2吗?
生:不是,是小男孩手上蛋糕的1/2
生:1/9
如果开始就有9个人,平均分成9份,每人就得到这块蛋糕的1/9?
11、这节课你有什么收获?
《圆的认识》教学设计 篇六
一、教学目标
1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。
2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
二、教学线索
(一)在活动中整体感知
1.思考:如何从各种平面图形中摸出圆?
2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
(二)在操作中丰富感受
1.交流:圆规的构造。
2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。
3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?
4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
(三)在交流中建构认识
1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
2.思考:半径有多少条、长度怎样,你是怎么发现的?
3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。
4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?
(四)在比较中深化认识
1.比较:正三角形、正方形、正五边形……中类似等长的“径”各有多少条?圆的半径又有多少条?
2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?
(五)在练习中形成结构
1.寻找:给定的圆中没有标出圆心,半径是多少厘米?
2.想象:半径不同,圆的大小会怎样?圆的大小与什么有关?
3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。
4.沟通:用圆规如何画出指定大小的圆?
(六)在拓展中深化体验
1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。
2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。