《平行四边形的面积》教学设计【优选3篇】
《平行四边形的面积》教学设计 篇一
教学目标:
1. 理解平行四边形的定义和性质;
2. 掌握计算平行四边形面积的方法;
3. 能够应用所学知识解决实际问题。
教学重点:
1. 平行四边形的定义和性质;
2. 平行四边形面积的计算方法。
教学准备:
1. 平行四边形的模型或图片;
2. 白板和黑板笔;
3. 教学用具:直尺、量角器、计算器。
教学过程:
Step 1 引入新知
教师出示平行四边形的模型或图片,引导学生观察并回忆平行四边形的定义和性质。教师可以提问学生如下问题:
1. 平行四边形有哪些性质?(对角线相等、相互平分、相邻角互补)
2. 平行四边形的特点是什么?(对边平行、对角线相等)
Step 2 学习计算平行四边形面积的方法
教师在黑板上绘制一个平行四边形,并标出边长和高。然后,教师以解题的方式,引导学生学习计算平行四边形面积的方法。
1. 通过观察,学生发现平行四边形的面积可以看作是底边乘以高的结果。
2. 教师给出一个具体的例子,让学生进行计算。
Step 3 练习应用
教师提供一些练习题,让学生进行练习,并解答问题。教师可以根据学生的程度,选择不同难度的题目。学生可以使用计算器辅助计算。
Step 4 拓展应用
教师给出一些实际问题,引导学生将所学知识应用到实际情境中。例如,教师可以问学生如下问题:
1. 你现在所在的教室是一个长方形,你能计算出教室的面积吗?
2. 你家的花园是一个平行四边形,你能计算出花园的面积吗?
Step 5 总结与归纳
教师与学生一起总结所学内容,让学生回顾并归纳平行四边形的定义、性质和计算面积的方法。
《平行四边形的面积》教学设计 篇二
教学目标:
1. 理解平行四边形的定义和性质;
2. 掌握计算平行四边形面积的公式;
3. 能够应用所学知识解决实际问题。
教学重点:
1. 平行四边形的定义和性质;
2. 平行四边形面积的计算公式。
教学准备:
1. 平行四边形的模型或图片;
2. 白板和黑板笔;
3. 教学用具:直尺、量角器、计算器。
教学过程:
Step 1 引入新知
教师出示平行四边形的模型或图片,引导学生观察并回忆平行四边形的定义和性质。教师可以提问学生如下问题:
1. 平行四边形有哪些性质?(对角线相等、相互平分、相邻角互补)
2. 平行四边形的特点是什么?(对边平行、对角线相等)
Step 2 学习计算平行四边形面积的公式
教师在黑板上绘制一个平行四边形,并标出边长和高。然后,教师以解题的方式,引导学生学习计算平行四边形面积的公式。
1. 通过观察,学生发现平行四边形的面积可以看作是底边乘以高的结果。
2. 教师给出一个具体的例子,让学生进行计算。
Step 3 练习应用
教师提供一些练习题,让学生进行练习,并解答问题。教师可以根据学生的程度,选择不同难度的题目。学生可以使用计算器辅助计算。
Step 4 拓展应用
教师给出一些实际问题,引导学生将所学知识应用到实际情境中。例如,教师可以问学生如下问题:
1. 你现在所在的教室是一个长方形,你能计算出教室的面积吗?
2. 你家的花园是一个平行四边形,你能计算出花园的面积吗?
Step 5 总结与归纳
教师与学生一起总结所学内容,让学生回顾并归纳平行四边形的定义、性质和计算面积的公式。同时,教师可以与学生讨论平行四边形面积计算方法与公式的异同之处。
《平行四边形的面积》教学设计 篇三
《平行四边形的面积》教学设计
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
一、导入新课
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的`宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h
说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=
ah。(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×h S=a·h或S=ah