平行四边形的面积教学设计(精彩5篇)
平行四边形的面积教学设计 篇一
教学目标:
1. 理解平行四边形的定义和性质;
2. 学会计算平行四边形的面积;
3. 能够运用所学知识解决实际问题。
教学重点:
1. 平行四边形的定义和性质;
2. 平行四边形面积的计算方法。
教学准备:
1. 教师准备PPT、教学板书、实物平行四边形模型等;
2. 学生准备笔记本、铅笔、计算器等。
教学过程:
Step 1 引入新知识(10分钟)
1. 教师出示一张平行四边形的图片,引导学生观察并描述其性质;
2. 教师简单解释平行四边形的定义和性质,引导学生思考平行四边形的特点。
Step 2 探索性学习(20分钟)
1. 教师出示一个平行四边形ABCD的图片,引导学生观察并思考如何计算它的面积;
2. 教师引导学生发现平行四边形的底边长和高之间的关系,即面积等于底边长乘以高;
3. 教师通过实物模型或教学板书演示计算面积的步骤,引导学生理解计算方法。
Step 3 讲解与练习(30分钟)
1. 教师用PPT或教学板书讲解平行四边形面积的计算公式,并解释每个符号的含义;
2. 教师通过示例演示计算平行四边形面积的步骤,让学生跟随计算;
3. 教师布置一些练习题,让学生独立或小组完成,并互相交流讨论。
Step 4 拓展与应用(15分钟)
1. 教师出示一些实际问题,引导学生运用所学知识计算平行四边形的面积;
2. 学生独立或小组完成实际问题的计算,并展示解决过程和答案;
3. 教师对学生的答案进行讲解和评价。
Step 5 总结与评价(5分钟)
1. 教师带领学生总结平行四边形面积的计算方法和注意事项;
2. 学生进行自我评价,回顾学习过程中的困难和收获;
3. 教师对学生的学习情况进行评价和反馈。
平行四边形的面积教学设计 篇二
教学目标:
1. 理解平行四边形的定义和性质;
2. 掌握计算平行四边形面积的方法;
3. 能够灵活运用所学知识解决实际问题。
教学重点:
1. 平行四边形的定义和性质;
2. 平行四边形面积的计算方法。
教学准备:
1. 教师准备教学板书、实物平行四边形模型等;
2. 学生准备笔记本、铅笔、计算器等。
教学过程:
Step 1 引入新知识(10分钟)
1. 教师通过展示一些实际生活中的平行四边形图片,引发学生对平行四边形的认知;
2. 教师简要解释平行四边形的定义和性质,引导学生思考平行四边形的特点。
Step 2 探索性学习(20分钟)
1. 教师出示一个平行四边形ABCD的图片,引导学生观察并思考如何计算它的面积;
2. 教师引导学生发现平行四边形的底边长和高之间的关系,即面积等于底边长乘以高;
3. 教师通过实物模型或教学板书演示计算面积的步骤,引导学生理解计算方法。
Step 3 讲解与练习(30分钟)
1. 教师用教学板书讲解平行四边形面积的计算公式,并解释每个符号的含义;
2. 教师通过示例演示计算平行四边形面积的步骤,让学生跟随计算;
3. 教师布置一些练习题,让学生独立或小组完成,并互相交流讨论。
Step 4 拓展与应用(15分钟)
1. 教师出示一些实际问题,引导学生运用所学知识计算平行四边形的面积;
2. 学生独立或小组完成实际问题的计算,并展示解决过程和答案;
3. 教师对学生的答案进行讲解和评价。
Step 5 总结与评价(5分钟)
1. 教师带领学生总结平行四边形面积的计算方法和注意事项;
2. 学生进行自我评价,回顾学习过程中的困难和收获;
3. 教师对学生的学习情况进行评价和反馈。
平行四边形的面积教学设计 篇三
教学目标:
1、探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。
2、让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。
教学重点:
探究平行四边形的面积计算公式。
教学难点:
充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。
教学具准备:
平行四边形纸片、尺子、剪刀、课件
教学过程
一、谈话,揭题:
1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?
2、揭题:平行四边形的面积。
二、探究新知:
问题(一)要求这个( )的面积,你认为必须知道哪些条件?
1、 同桌交流
2、 反馈:①长边×短边=10×7=70平方厘米
②底×高=10×6=60平方厘米
3、 引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?
4、 学生动手验证(小组合作)
5、 请小组代表说明验证过程
问题(二)为什么要沿着高将平行四边形剪开?
问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?
问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?
1、 引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?
2、 推导公式:平行四边形的面积=底×高
3、 小结
问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?
1、动态演示: ,引导发现周长不变,面积变大了。
2、动态演示: ,发现面积变小了
3、要求平行四边形的面积,现在你认为必须知道哪些条件?
问题(六)是不是所有平行四边形的面积都等于底×高呢?
让学生拿出各自的平行四边形,动手剪拼,看看行不行。
三、应用新知
1、 左图平行四边形的面积=?
2、解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?
四、总结:
1、回想一下今天我们是怎样学习平行四边形的面积?
2、你还想学习哪些知识呢?
平行四边形的面积教学设计 篇四
设计说明
在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:
1、动手实践,多维探究。
数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算
它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。
2、分层运用新知,逐步理解内化。
新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。
课前准备
教师准备 PPT课件 学情检测卡 课堂活动卡 平行四边形卡片 剪刀
学生准备 练习卡片 平行四边形卡片 剪刀
教学过程
⊙创设情境,导入新课
1、常用的面积单位有哪些?
2、出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6 m,宽是4 m,怎样计算它的面积呢?
根据“长方形的面积=长×宽”,得出长方形花坛的面积是24 m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习平行四边形面积的计算。
(板书课题:平行四边形的面积)
设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。
⊙操作实践,探究新知
一、数方格法。
1、复习旧知。
师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。
(出示方格纸)
师:这是什么图形?(长方形)如果一个方格代表1 m2,那么这个长方形的面积是多少?(24 m2)
师:这是什么图形?(平行四边形)如果一个方格代表1 m2,自己在方格纸上数一数,这个平行四边形的面积是多少?
师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。
2、填写并观察表格。
设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。 3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。
二、割补法。
1、讨论:你们准备怎样将平行四边形转化成长方形呢?
预设 生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。
2、组织学生操作,教师巡视指导。
3、教师示范平行四边形转化成长方形的过程。
(1)先沿着平行四边形的高剪下左边的直角三角形。
(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。
4、观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)
(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?
(2)这个长方形的长与原来的平行四边形的底有什么关系?
(3)这个长方形的宽与原来的平行四边形的高有什么关系?
(4)思考后填空。
①原来的平行四边形的底与长方形的( )相等。
②原来的平行四边形的( )与长方形的( )相等。
③这两个图形的( )相等。
平行四边形的面积教学设计 篇五
教材分析
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析
1、学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标
知识与技能
1、使学生理解和掌握平行四边形的面积计算公式。
2、会正确计算平行四边形的面积。
过程与方法:
1、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程
一、复习导入
1、什么叫面积?常用的面积计量单位有那些?
2、出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知
1、情景导入:出示长方形、 平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?
板书课题:平行四边形的面积
2、用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的`都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2、推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b.请学生演示剪拼的过程及结果。
c.教师用教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3、教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
S=ah
三、 应用反馈。
1、出示教材练习十五第1题。读题并理解题意。
学生试做,交流作法和结果。
2、讨论:下面两个平行四边形的面积相等吗?为什么?
学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)
四、课堂小结。
通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)