高中数学必修二教学设计(精彩6篇)
高中数学必修二教学设计 篇一
标题:通过应用问题提高学生对数列的理解和运用能力
引言:
数列是高中数学必修二中的重要内容,对于学生的数学思维能力和运用能力有着重要的影响。然而,很多学生对于数列的概念和应用存在一定的困惑。因此,在教学设计中,通过应用问题引导学生进行数列的理解和运用,是一种有效的教学方法。
教学目标:
1. 理解数列的概念,能够准确地描述数列的特点和规律;
2. 掌握数列的常用表示方法和求解方法;
3. 能够通过应用问题运用数列的知识解决实际问题。
教学内容:
1. 数列的概念和特点:逐项规律、通项公式、数列的前n项和等;
2. 数列的表示方法:通项公式、递推公式、图像表示等;
3. 数列的求解方法:等差数列、等比数列、斐波那契数列等;
4. 应用问题解析和解决:通过实际生活中的问题,引导学生将数列的概念和方法运用到问题的解决中。
教学步骤:
1. 导入:通过一个生活实例引出数列的概念和应用的重要性;
2. 理解数列的概念和特点:通过示例和讲解,引导学生理解数列的逐项规律、通项公式等概念;
3. 掌握数列的表示方法:通过实例和练习,让学生掌握数列的通项公式、递推公式等表示方法;
4. 理解数列的求解方法:通过实例和讲解,让学生理解等差数列、等比数列、斐波那契数列等求解方法;
5. 应用问题解析和解决:通过实际问题的分析和解决,让学生将数列的知识应用到实际问题中,提高对数列的理解和运用能力;
6. 总结与拓展:对本节课的内容进行总结,并引导学生拓展思考数列在其他学科和领域中的应用。
教学评价:
1. 课堂讨论和练习:通过课堂讨论和练习的方式,检验学生对数列概念和应用的掌握情况;
2. 应用问题解决:通过学生在应用问题中的解决过程,评价学生对数列的理解和运用能力;
3. 总结和拓展:通过学生对数列在其他学科和领域中的应用的思考,评价学生的拓展思维能力。
教学反思:
通过应用问题引导学生进行数列的理解和运用,可以提高学生的学习兴趣和参与度。在教学设计中,需要合理安排应用问题的难度和复杂度,确保学生能够在解决问题中真正理解和掌握数列的概念和方法。同时,教师需要及时进行教学反馈和指导,帮助学生纠正错误和巩固知识。通过不断优化教学设计和教学方法,可以提高学生对数列的理解和运用能力。
高中数学必修二教学设计 篇二
标题:培养学生的创新思维和解决问题的能力——高中数学必修二教学设计
引言:
高中数学必修二作为数学学科的重要组成部分,对于培养学生的创新思维和解决问题的能力具有重要作用。然而,很多学生在学习数学的过程中缺乏兴趣和动力,对于数学的概念和方法存在一定的困惑。因此,在教学设计中,通过培养学生的创新思维和解决问题的能力,可以提高学生对数学的学习兴趣和参与度。
教学目标:
1. 培养学生的创新思维和解决问题的能力;
2. 理解数学概念和方法的应用;
3. 提高学生的学习兴趣和参与度。
教学内容:
1. 数学概念和方法的应用:数列、函数、方程等;
2. 创新思维和解决问题的方法:思维导图、归纳法、举例法等;
3. 应用问题解析和解决:通过实际问题的分析和解决,培养学生的创新思维和解决问题的能力。
教学步骤:
1. 导入:通过一个有趣的数学问题或实例,引发学生的思考和兴趣;
2. 学习数学概念和方法的应用:通过示例和讲解,让学生理解数学概念和方法的应用;
3. 培养创新思维和解决问题的方法:通过思维导图、归纳法、举例法等方法,引导学生培养创新思维和解决问题的能力;
4. 应用问题解析和解决:通过实际问题的分析和解决,让学生将创新思维和解决问题的方法应用到实际问题中;
5. 总结与拓展:对本节课的内容进行总结,并引导学生拓展思考数学在其他学科和领域中的应用。
教学评价:
1. 课堂讨论和练习:通过课堂讨论和练习的方式,检验学生对数学概念和方法的应用的掌握情况;
2. 应用问题解决:通过学生在应用问题中的解决过程,评价学生的创新思维和解决问题的能力;
3. 总结和拓展:通过学生对数学在其他学科和领域中的应用的思考,评价学生的拓展思维能力。
教学反思:
通过培养学生的创新思维和解决问题的能力,可以提高学生对数学的学习兴趣和参与度。在教学设计中,需要关注学生的个体差异和学习需求,因材施教,激发学生的学习潜力。同时,教师需要及时进行教学反馈和指导,帮助学生纠正错误和巩固知识。通过不断优化教学设计和教学方法,可以培养学生的创新思维和解决问题的能力。
高中数学必修二教学设计 篇三
1教学目标
1.知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积的求法.
2.能运用公式求解柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
2学情分析
通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。
3重点难点
重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。
难点:会求柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
4教学过程 4.1 第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(二).尝试学习
1.柱体的表面积
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.
2.锥体的表面积
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.
3.台体的表面积
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.
(三).互动课堂
例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )
A. B.ab C.(+)ab D.ab
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )
A.2π B. C.6π D.9π
(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )
A. B.2 C. D.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )
A.81π B.100π C.14π D.169π
(五)、 课堂小结:
求柱体表面积的方法
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
(4)求棱锥侧面积的一般方法:定义法.
(5)求圆锥侧面积的一般方法:公式法:S侧=πrl.
(6)求棱台侧面积的一般方法:定义法.
(7)求圆台侧面积的一般方法:公式法S侧=2(r+r′)l.
五、当堂检测
1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )
A.32 B.16+16
C.48 D.16+32 网]
2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )
A.180 B.200 C.220 D.240
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )
A.6 B.6π C.3π D.6π
六、作业:(1)课时闯关(今晚交)
七、课后反思:本节课你会哪些?还存在哪些问题?
1.3 空间几何体的表面积与体积
课时设计 课堂实录
1.3 空间几何体的表面积与体积
1第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(二).尝试学习
1.柱体的表面积
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.
2.锥体的表面积
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.
3.台体的表面积
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.
(三).互动课堂
例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )
A. B.ab C.(+)ab D.ab
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )
A.2π B. C.6π D.9π
(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )
A. B.2 C. D.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )
A.81π B.100π C.14π D.169π
(五)、 课堂小结:
求柱体表面积的方法
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
(4)求棱锥侧面积的一般方法:定义法.
(5)求圆锥侧面积的一般方法:公式法:S侧=πrl.
(6)求棱台侧面积的一般方法:定义法.
(7)求圆台侧面积的一般方法:公式法S侧=2(r+r′)l.
五、当堂检测
1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )
A.32 B.16+16
C.48 D.16+32 网]
2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )
A.180 B.200 C.220 D.240
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )
A.6 B.6π C.3π D.6π
六、作业:(1)课时闯关(今晚交)
七、课后反思:本节课你会哪些?还存在哪些问题?
高中数学必修二教学设计 篇四
课题名称
《2.1空间点、直线与平面之间的位置关系》
科 目
高中数学
教学时间
1课时
学习者分析
通过第一章《空间几何体》的学习,学生对于立体几何已经有了初步的认识,能够识别棱柱、棱锥、棱台、圆柱、圆锥、圆台、球,并理解它们的几何特征。但是这种理解还只是建立在观察、感知的基础上的,对于原理学生是不明确的,所以学生此时有很强的求知欲,急于想搞清楚为什么;同时学生经过高中一年的学习,已经具备了一定的逻辑推理能力,只是缺乏训练,不够严密,不够清晰;有一定的自主探究和合作学习的能力,但有待提高,并愿意动手并参与分组讨论。
教学目标
一、知识与技能
1. 理解空间点、直线、平面的概念,知道空间点、直线、平面之间存在什么样的关系;
2. 记忆三公理三推论,能够用简单的语言概括三公理三推论,会用图形表示三公理三推论,并将其转化成数学符号语言;
3. 明确三公理三推论的功能,掌握使用三公理三推论解决立体几何问题的方法。
二、过程与方法
1. 通过自己动手制作模型,直观地感知空间点、直线与平面之间的位置关系,以及三公理三推论;
2. 通过思考、讨论,发现三公理三推论的条件和结论;
3. 通过例题的训练,进一步理解三公理三推论,明确三公理三推论的功能。
三、情感态度与价值观
1. 通过操作、观察、讨论培养对立体几何的兴趣,建立合作的意识;
2. 感受立体几何逻辑体系的严密性,培养学生细心的学习品质。
教学重点、难点
1. 理解三公理三推论的概念及其内涵;
2. 使用三公理三推论解决立体几何问题。
教学资源
(1)每位同学准备两张硬纸板,其中一张中间用小刀划条缝,铅笔三根;
(2)教师自制的多媒体课件。
《2.1空间点、直线与平面之间的位置关系》教学过程的描述
教学活动1
一、导入新课
1. 回忆构成平面图形的基本元素:点、直线。①两者都是最原始的概念,点没有大小、面积、厚度,直线是向两侧无限延伸的;②点用大写英文字母表示,直线用小写英文字母表示;③ 如果将点看作元素,则直线是一系列点构成的集合,所以点在直线上记作,点不在直线上记作;
2. 提出问题:构成空间几何体有哪些基本元素?(大屏幕出示棱柱、棱锥、棱台)学生很快得到答案:点、直线、平面。
3. 引入课题:什么是平面?点、直线、平面之间有什么样的位置关系?平面有什么性质?这就是我们这堂课要研究的问题。
教学活动2
二、观察操作,合作探究
1. 理解平面的概念
平面也是一个最原始的概念,是向四周无限延伸的,没有边界。一般用希腊字母、、,…表示平面,或者记为平面ABC,平面ABCD等等。
2. 明确空间点、直线、平面之间存在的位置关系
①点与直线;②点与平面;③直线与平面。
3. 探究平面的性质
⑴ 公理一
① 学生操作,研究如何将铅笔放置到硬纸板内
问题一:铅笔与硬纸板只有一个公共点可以么?
问题二:要将铅笔放置到硬纸板内至少需要几个公共点?
学生通过操作,体会到要将铅笔放置到硬纸板内,只需将铅笔上两点放置到硬纸板内。
② 抽象出公理一
问题一:如何用图形表示公理一?
问题二:要求学生将公理一表示成数学符号的形式;
问题三:公理一有什么功能?
③ 动画演示公理一
⑵ 公理二
① 学生操作,研究过空间中三点能确定几个平面
问题一:若三点共线,能确定几个平面?
问题二:要确定一个平面,需要三点满足什么条件?
学生通过操作,体会公理二所表达的含义。
② 抽象出公理二
问题一:如何用图形表示公理二?
问题二:要求学生将公理二表示成数学符号的形式;
问题三:还能根据什么条件确定一个平面?引出三推论。
问题四:公理二及三推论有什么功能?
③ 动画演示公理二及三推论
⑶ 公理三
① 学生操作,展示两个平面只有一个公共点
问题一:两个平面真的只有一个公共点么?
问题二:这个公共点与这条公共直线有什么关系?
学生通过操作,体会公理三所表达的含义。
② 抽象出公理三
问题一:如何用图形表示公理三?
问题二:要求学生将公理三表示成数学符号的形式;
问题三:公理三有什么功能?
③ 动画演示公理三
教学活动3
三、归纳总结,加深理解
⒈ 平面具有无限延展性;
⒉ 公理一有什么功能?条件是什么?
⒊ 公理二有什么功能?条件是什么?
⒋ 公理三有什么功能?条件是什么?
教学活动4
四、布置作业,课外研讨
⒈ 课后练习P43:1、2、3、4;
⒉ 平面几何中证明平行四边形有哪些定理?这些定理在空间中能否成立?说明理由。
高中数学必修二教学设计 篇五
共1课时
1教学目标
一、知识与技能:1、理解并掌握直线与平面平行的性质定理;
2、引导学生探究线面平行的问题可以转化为线线平行的问题,从而能够通过化归解决有关问题,进一步体会数学转化的思想。
二、过程与方法:通过直观观察、猜想研究线面平行的性质定理,培养学生的自主学习能力,发展学生的合情推理能力及逻辑论证能力。
三、情感、态度与价值观:培养学生主动探究知识、合作交流的意识,在体验数学转化过程中激发学生的学习兴趣,从而培养学生勤于动脑和动手的良好品质。
2重点难点
教学重点:线与面平行的性质定理及其应用。
教学难点:线与面的性质定理的应用。
3教学过程 3.1 第一学时 教学活动 活动1【导入】问题引入
一、问题引入
木工小刘在处理如图所示的一块木料,已知木料的棱BC∥平面A′C′.现在小刘要经过平面A′C′内一点P和棱BC将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?
预设:(1)过P作一条直线平行于B′C′;
(2)过P作一条直线平行与BC。
(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)
活动2【讲授】新课讲授
二、知识回顾
判定一条直线与一个平面平行的方法:
1、定义法:直线与平面没有公共点。
2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)
三、知识探究(一)
思考一:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
答:平行或异面。
思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
答:无数条;平行。
思考3:如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?
答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
思考4:综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)
四、知识探究(二)
定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
定理可简述为:线面平行,则线线平行。
直线与平面平行的性质定理的符号表示:
(由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)
活动3【练习】课堂练习
五、应用示例
练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。
(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )
(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )
(3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )
例3 如图所示的一块木料中,棱BC平行于面A′C′.
(1)要经过面A′C′ 内一点P和棱BC将木料锯开,应怎样画线?
(2)所画的线与平面AC是什么位置关系?
分析:经过木料表明A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。
练习2:如图,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG,求证:FG∥BD.
活动4【讲授】课堂小结
六、课堂小结
1、直线与平面平行的判定定理
(1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(2)线线平行→线面平行
2、直线与平面平行的性质定理
(1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
(2)线面平行→线线平行
(课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)
活动5【作业】课后作业
P61练习,习题2.2A组:1,2. (做在书上)
P62习题2.2A组:5,6.
2.2直线、平面平行的判定及其性质
课时设计 课堂实录
2.2直线、平面平行的判定及其性质
1第一学时 教学活动 活动1【导入】问题引入
一、问题引入
木工小刘在处理如图所示的一块木料,已知木料的棱BC∥平面A′C′.现在小刘要经过平面A′C′内一点P和棱BC将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?
预设:(1)过P作一条直线平行于B′C′;
(2)过P作一条直线平行与BC。
(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)
活动2【讲授】新课讲授
二、知识回顾
判定一条直线与一个平面平行的方法:
1、定义法:直线与平面没有公共点。
2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)
三、知识探究(一)
思考一:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
答:平行或异面。
思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
答:无数条;平行。
思考3:如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?
答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
思考4:综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)
四、知识探究(二)
定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
定理可简述为:线面平行,则线线平行。
直线与平面平行的性质定理的符号表示:
(由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)
活动3【练习】课堂练习
五、应用示例
练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。
(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )
(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )
(3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )
例3 如图所示的一块木料中,棱BC平行于面A′C′.
(1)要经过面A′C′ 内一点P和棱BC将木料锯开,应怎样画线?
(2)所画的线与平面AC是什么位置关系?
分析:经过木料表明A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。
练习2:如图,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG,求证:FG∥BD.
活动4【讲授】课堂小结
六、课堂小结
1、直线与平面平行的判定定理
(1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(2)线线平行→线面平行
2、直线与平面平行的性质定理
(1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
(2)线面平行→线线平行
(课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)
活动5【作业】课后作业
P61练习,习题2.2A组:1,2. (做在书上)
P62习题2.2A组:5,6.