整数乘以分数的教案【实用6篇】
整数乘以分数的教案 篇一
在数学教学中,整数乘以分数是一个非常基础且重要的概念。学生们在学习这一概念时,常常会遇到困惑和难以理解的问题。因此,我们需要设计一个能够帮助学生理解整数乘以分数的教案,以提高他们的学习效果和兴趣。
教学目标:
1. 理解整数乘以分数的概念和运算规则。
2. 掌握整数乘以分数的计算方法。
3. 能够应用整数乘以分数解决实际问题。
教学重点:
1. 整数与分数的相乘运算。
2. 分数化简与运算结果的记录。
教学难点:
1. 整数与分数乘法的运算规则。
2. 如何将分数化简为最简形式。
教学准备:
1. 教师准备黑板、白板或投影仪等教学工具。
2. 准备一些练习题和实际问题供学生练习和探索。
教学步骤:
Step 1 引入整数乘以分数的概念
通过一些具体的实例,引导学生思考整数与分数相乘的结果,并提出问题,让学生思考如何计算和表示整数乘以分数。
Step 2 讲解整数乘以分数的运算规则
在黑板上或投影仪上,用简单易懂的语言和图示讲解整数乘以分数的运算规则,包括正数与分数相乘以及负数与分数相乘的情况。
Step 3 深入探讨整数与分数相乘的特殊情况
让学生在小组或个人进行讨论,探讨整数与分数相乘的特殊情况,如何处理负号和零等情况,并总结出相应的规律和方法。
Step 4 练习和应用
让学生进行一些练习题,巩固他们对整数乘以分数的运算规则的掌握,并引导他们应用所学知识解决一些实际问题,培养他们的应用能力。
Step 5 总结和归纳
让学生总结整理整数乘以分数的运算规则和方法,并与整数乘法进行对比,找出相似和不同之处。
Step 6 拓展思考
提出一些拓展性问题,让学生思考整数乘以分数的应用场景和实际意义,激发他们的思维和创造力。
整数乘以分数的教案 篇二
整数乘以分数的教案 篇二
整数乘以分数的教案 篇三
教学重点
:
掌握分数乘以分数的计算法则也适用于整数乘以分数。
教学难点
:
掌握并能熟练运用分数乘以分数的计算法则。使学生能进行灵活的计算,并能根据乘数特点判断积与被乘数的大小。
教学过程
:
一、复习。
1.口算。练习二的第9题
2.计算。练习二的第7题
二、新授。
1、统一分数乘法的计算法则。
2、明确:因为整数都可以看成是1的分数,所以分数乘以分数的计算法则也适用于整数乘以分数,因此分数乘法的计算法则只要记住一条,即分子相乘的积做分子,分母相乘的积做分母:具体计算时碰到整数和分数相乘不必把整数化成分母是1的分数,这样既便于学生记忆又表明算法合理。
3、练习
4、指导学生判断积与被乘数、乘数间的关系:一个数(0除外)乘以比1大的数,积比被乘数大;乘以比1小的数,积比被乘数小。
三、巩固练习
1、基本练习:做一做和练习二的第5题。
2、深化练习。练习二的其他题
四、作业布置
整数乘以分数的教案 篇四
教学目标
1.理解分数乘以整数的意义;掌握计算法则;正确计算分数乘以整数的算式题。
2.浸透事物是相互联系、相互转化的辩证唯物主义观点。
教学重点
分数乘以整数的意义及计算方法。
教学难点
分数乘以整数的计算法则的推导。
教具准备
1.自制两套三层复式投影片。
2.投影图片3张。
教学过程设计
(一)复习
(出示投影一)
1.口算:
问:怎样计算?(分母不变分子相加。)
2.根据题意列出算式:
(1)5个12是多少?
(2)3个14是多少?
列式:
(1)12+12+12+12+12或125
(2)14+14+14或143
题中的两个式子哪个简便?(125,143)
它们各表示什么意思呢?(5个12是多少? 3个14是多少?)
能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)
这是整数乘法的意义,它对于分数乘法适用吗?
(二)讲授新课
1.分数乘以整数的意义。
多少块?(投影)
听回答,老师边重复边投影(三层复式投影片)。
把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。
(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)
问:为什么?(三个加数相同。)
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)
师:这就是今天我们要学习的分数乘以整数。(板书课题)
师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出
(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数
练一练(投影片二)
①看图写算式。
②根据意义列式。
③看算式说意义。
2.分数乘以整数的法则。
(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗?
①导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转化为已经学过的旧知识来进行计算。(可以互相说、互相看。)
该怎么办呢?
引导学生讨论得出:
边加上虚线框。)
(2)根据上面方法试算下面各题。
(学生在练习本上做,用投影反馈。)
②归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
③应用法则计算。
有不一样的吗?强调结果化成带分数。
还有不同的做法吗?
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习
1.看图写算式。
第3页的第1题,看图写算式。(填书上)
行间巡视,注意:被乘数和乘数的位置。
2.先说算式意义,再填空。
3.看算式,约分计算。
4.口算:
5.判断:(打手势)
(四)课堂总结
今天我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应注意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)
整数乘以分数的教案 篇五
教学目的:
使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用先约分再相乘的方法进行计算。
教学重点:
分数乘整数的意义
教学难点:
分数乘整数的计算法则:如何先约分再乘
教学过程:
一、复习。
1、5个12是多少?
用加法算:12+12+12+12+12
用乘法算:125
问:125算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问:有什么特点?应该怎样计算?
3、小结:
(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
二、新授
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:(块)
用乘法算:(块)
问:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)
整数乘以分数的教案 篇六
一、教学内容
人教版小学数学六年级上册第二单元第一课时的内容《分数乘法》的第一课时“分数乘以整数”。
二、教学目标
1、知识与能力:在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、情感与态度:通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、过程与方法:引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
三、教学重点、难点
重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
难点:引导学生总结分数乘整数的计算法则。
四、教学准备
ppt课件
五、教学过程
(一)问题导入
1、故事科普知识导入问题
师:同学们,你们喜欢看《动物世界》吗?
生:回答。
师:前几天老师看了一种动物,叫袋鼠,说它身高有两米六,一跳可达6—7米,世界上最快的袋鼠一跳可达12米。是不是很快啊,我们人一步可以走多远呢?我们的速度是不是比起袋鼠就要慢很多啊,今天老师这儿就刚好又一个关于人和袋鼠的速度问题,我们一起来看一下。(ppt展示如图)
2、袋鼠问题引入分数乘以整数
(1)老师引导学生看图
师:我们知道。在做应用题时,要先看题理解题意,那么我们一起来看一下。我们首先理解已知的题意“人跑一步的距离相当于袋鼠跳一下的几分之几?”也就是说可以把袋鼠跳一下的距离看做一整条线段即单位“1”。然后把这条线段平均分成11份,其中的2份就表示人跑一步的距离。(老师板书线段,拿出单位“1”的线段教具,标记其中2线段,作为人跑一步的距离。)
(2)引导学生根据线段图理解
师:人跑一步是袋鼠跳一下的2╱11,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”应该怎样求呢?
生:就是求3个2╱11相加是多少?
师:对,也就是列式子表示为:2/11+2/11+2/11=
(同学们计算出答案为6╱11)
师:我们以前学过,几个相同的数相加,还可以怎样表示呢?
生:可以表示为:2/11×3
师:对,我们还可以表示为2╱11×3,那么像这样的分数乘以一个整数的式子应该怎样计算呢?今天我们就来学习新内容——分数乘法。(PPT播放题目页面,内容为“分数乘法——分数乘以整数”。)
(二)探讨新知
1、分数乘以整数的法则。
(1)导出计算方法。
紧接刚才的袋鼠与人速度问题,回到刚才的计算,老师继续引导解决。
师:(指着板书上的式子“2/11×3”)你们会计算吗?我们一起来看看。我们知道“2/11×3”与“2╱11+2╱11+2╱11”是相等的,所以2╱11×3=2╱11+2╱11+2╱11=2+2+2╱11=2×3╱11=6╱11。(老师板书计算)
师:我们计算出了答案,请大家一起来观察一下。板书如下:
=6╱11
看看你们能不能发现什么,看着黑板上的计算过程及结果,你们能总结出分数乘以整数的计算法则吗?现在前后左右四人为一组,小组讨论一下,时间为一分钟,看看哪个小组总结的又快又准确。
(同学讨论中……,老师走下讲台,询问同学们讨论情况。)
(2)归纳法则。
师:好了,我们的讨论时间到了,同学们得出结论了吗?通过以上计算和讨论,你们知道了分数乘以整数应该怎样计算吗?
生:同学们分享自己的结论。
师:同学们都说的非常好,现在老师总结一下。展示ppt如下:
分数乘以整数,就是用分数的分子和整数相乘的积作分子,分母不变。
(老师板书,同学们朗读并记忆。)
(3)应用法则意义以及掌握计算。
师:我们通过计算和讨论得出了分数乘以整数的计算法则,那么现在我们来看一看这两种方法有什么不一样吗?这两种方法哪种简单?为什么?
生:回答。