高中函数基本性质知识点总结【经典3篇】
高中函数基本性质知识点总结 篇一
高中函数是数学课程中的重要内容之一,掌握函数的基本性质对于学生理解数学概念和解决实际问题至关重要。本篇将总结高中函数的基本性质知识点,帮助学生更好地掌握和运用函数。
1. 函数的定义域和值域
函数的定义域是指函数所能接受的自变量的取值范围,值域是指函数能够取得的因变量的取值范围。在解题过程中,需要注意函数的定义域和值域,避免出现不合理的计算结果。
2. 函数的奇偶性
对于函数f(x),若f(-x) = f(x),则该函数为偶函数;若f(-x) = -f(x),则该函数为奇函数;若函数既不满足偶函数的条件,也不满足奇函数的条件,则函数既不是偶函数也不是奇函数。
3. 函数的单调性
函数的单调性是指函数在定义域上的增减性。若对于任意的x1、x2(x1 < x2),有f(x1) < f(x2),则函数在定义域上是递增的;若对于任意的x1、x2(x1 < x2),有f(x1) > f(x2),则函数在定义域上是递减的。
4. 函数的最值
函数的最值是指函数在定义域上的最大值和最小值。在求解函数的最值时,可以使用导数的方法,找出函数的驻点和端点,并进行比较。
5. 函数的对称轴和顶点
对于二次函数y = ax^2 + bx + c,其中a ≠ 0,其对称轴的方程为x = -b/2a,对称轴上的点为顶点。通过对称轴和顶点的求解,可以进一步了解函数的性质。
6. 函数的周期性
周期函数是指存在一个正数T,对于任意的x,在定义域上有f(x+T) = f(x)。对于周期函数,可以通过周期的概念来进行函数的图像绘制和性质分析。
总之,高中函数的基本性质包括函数的定义域和值域、奇偶性、单调性、最值、对称轴和顶点以及周期性。掌握这些知识点,可以更好地理解和运用函数,解决数学问题。
高中函数基本性质知识点总结 篇二
高中函数是数学课程中的重要内容,掌握函数的基本性质对于学生理解数学概念和解决实际问题至关重要。本篇将继续总结高中函数的基本性质知识点,帮助学生更好地掌握和运用函数。
1. 函数的图像与性质
函数的图像是函数的可视化表达,通过函数的图像可以了解函数的性质。对于一次函数y = kx + b,其中k为斜率,b为截距,可以通过斜率和截距来判断函数的单调性和截距等。
2. 函数的复合
复合函数是指将一个函数的输出作为另一个函数的输入,形成一个新的函数。通过复合函数的运算,可以进行函数的合并和转换,进一步拓展函数的应用范围。
3. 函数的反函数
对于函数f(x),如果存在一个函数g(x),使得f(g(x)) = x,且g(f(x)) = x,那么g(x)就是f(x)的反函数。通过反函数的概念,可以解决函数的逆运算问题。
4. 函数的零点和解析式
函数的零点是指函数的值为0的自变量的取值,通过求解函数的零点,可以找到函数的解析式和方程的解。
5. 函数的极值和拐点
函数的极值是指函数在某个区间内达到的最大值或最小值,通过求解函数的导数和二阶导数,可以找到函数的极值和拐点。
6. 函数的变化率和平均变化率
函数的变化率是指函数值的变化与自变量变化的比值,平均变化率是指函数在某一区间内的变化率的平均值。通过求解函数的变化率和平均变化率,可以进一步分析函数的性质和趋势。
总之,高中函数的基本性质包括函数的图像与性质、复合函数、反函数、零点和解析式、极值和拐点以及变化率和平均变化率。掌握这些知识点,可以更好地理解和运用函数,解决数学问题。
高中函数基本性质知识点总结 篇三
高中函数基本性质知识点总结
在年少学习的日子里,看到知识点,都是先收藏再说吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。你知道哪些知识点是真正对我们有帮助的吗?以下是小编为大家整理的高中函数基本性质知识点总结,仅供参考,大家一起来看看吧。
知识点概述
关于函数的基本性质的知识点是一个系统的知识体系,需要重点掌握.
知识点总结
1.函数的有关概念
函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作: y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x) xA }叫做函数的值域.
注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.
2.定义域补充
能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:
(1) 分式的分母不等于零;
(2) 偶次方根的被开方数不小于零;
(3) 对数式的真数必须大于零;
(4) 指数、对数式的底必须大于零且不等于 1.
(5) 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 .
(6)指数为零底不可以等于零
构成函数的三要素:定义域、对应关系和值域
再注意:
(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
值域补充
( 1 )、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 .
( 2 ) . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 .
( 3 ) . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .
3. 函数图象知识归纳
(1) 定义:在平面直角坐标系中,以函数 y=f(x) , (x A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C ,叫做函数 y=f(x),(x A)的图象.
C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) y= f(x) , x A }
图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .
(2) 画法
A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点 P(x, y) ,最后用平滑的曲线将这些点连接起来 .
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3) 作用:
1 、直观的看出函数的性质;
2 、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。
4.快去了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
5.什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的'对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A B
给定一个集合A到B的映射,如果aA,bB.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,
①集合A、B及对应法则f是确定的;
②对应法则有方向性,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;
③对于映射f:AB来说,则应满足:
(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;
(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;
Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
常用的函数表示法及各自的优点:
函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;
解析法:必须注明函数的定义域;
图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;
列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值
补充一:分段函数 (参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
(1)分段函数是一个函数,不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数
如果 y=f(u),(u M),u=g(x),(xA),则 y=f[g(x)]=F(x),(xA) 称为f、g的复合函数。
常见考点考法
关于值域 定义域的考核是重点
拓展:
一、函数自身的对称性探究
定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是
f (x) + f (2a-x) = 2b
证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x)
即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)
∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。
推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0
定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是
f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)
推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)
定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。
②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称 (a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。
③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。
①②的证明留给读者,以下给出③的证明:
∵函数y = f (x)图像既关于点A (a ,c) 成中心对称,
∴f (x) + f (2a-x) =2c,用2b-x代x得:
f (2b-x) + f [2a-(2b-x) ] =2c………………(*)
又∵函数y = f (x)图像直线x =b成轴对称,
∴ f (2b-x) = f (x)代入(*)得:
f (x) = 2c-f [2(a-b) + x]…………(**),用2(a-b)-x代x得
f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得:
f (x) = f [4(a-b) + x],故y = f (x)是周期函数,且4 a-b是其一个周期。
二、不同函数对称性的探究
定理4. 函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。
定理5. ①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。
②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。
③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。
定理4与定理5中的①②证明留给读者,现证定理5中的③
设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)。记点P( x ,y)关于直线x-y = a的轴对称点为P'(x1, y1),则x1 = a + y0 , y1 = x0-a ,∴x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) ∴点P'(x1, y1)在函数x-a = f (y + a)的图像上。
同理可证:函数x-a = f (y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f (x)的图像上。故定理5中的③成立。
推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。
三、三角函数图像的对称性列表
注:①上表中k∈Z
②y = tan x的所有对称中心坐标应该是(kπ/2 ,0 ),而在岑申、王而冶主编的浙江教育出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y = tan x的所有对称中心坐标是( kπ, 0 ),这明显是错的。
四、函数对称性应用举例
例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( )(第十二届希望杯高二 第二试题)
(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数
(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数
解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).
∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。
故选(A)
例2:设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x对称,若g(5) = 1999,那么f(4)=( )。
(A)1999; (B)2000; (C)2001; (D)2002。
解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称,
∴y = g-1(x-2) 反函数是y = f(x-1),而y = g-1(x-2)的反函数是:y = 2 + g(x), ∴f(x-1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001
故f(4) = 2001,应选(C)
例3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时,
f (x) = - x,则f (8.6 ) = _________ (第八届希望杯高二 第一试题)
解:∵f(x)是定义在R上的偶函数∴x = 0是y = f(x)对称轴;
又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3
例4.函数 y = sin (2x + )的图像的一条对称轴的方程是( )(92全国高考理) (A) x = - (B) x = - (C) x = (D) x =
解:函数 y = sin (2x + )的图像的所有对称轴的方程是2x + = k +
∴x = - ,显然取k = 1时的对称轴方程是x = - 故选(A)
例5. 设f(x)是定义在R上的奇函数,且f(x+2)= -f(x),当0≤x≤1时,
f (x) = x,则f (7.5 ) = ( )
(A) 0.5(B)-0.5(C) 1.5(D) -1.5
解:∵y = f (x)是定义在R上的奇函数,∴点(0,0)是其对称中心;
又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。
∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5
故选(B)锐角三角函数公式
sin =的对边 / 斜边
cos =的邻边 / 斜边
tan =的对边 / 的邻边
cot =的邻边 / 的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A))
三倍角公式
sin3=4sinsin(/3+)sin(/3-)
cos3=4coscos(/3+)cos(/3-)
tan3a = tan a tan(/3+a) tan(/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B
降幂公式
sin^2()=(1-cos(2))/2=versin(2)/2
cos^2()=(1+cos(2))/2=covers(2)/2
tan^2()=(1-cos(2))/(1+cos(2))
推导公式
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos^2
1-cos2=2sin^2
1+sin=(sin/2+cos/2)^2
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
两角和差
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
sin()=sincoscossin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
和差化积
sin+sin = 2 sin[(+)/2] cos[(-)/2]
sin-sin = 2 cos[(+)/2] sin[(-)/2]
cos+cos = 2 cos[(+)/2] cos[(-)/2]
cos-cos = -2 sin[(+)/2] sin[(-)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinsin = [cos(-)-cos(+)] /2
coscos = [cos(+)+cos(-)]/2
sincos = [sin(+)+sin(-)]/2
cossin = [sin(+)-sin(-)]/2
诱导公式
sin(-) = -sin
cos(-) = cos
tan (a)=-tan
sin(/2-) = cos
cos(/2-) = sin
sin(/2+) = cos
cos(/2+) = -sin
sin() = sin
cos() = -cos
sin() = -sin
cos() = -cos
tanA= sinA/cosA
tan(/2+)=-cot
tan(/2-)=cot
tan()=-tan
tan()=tan
诱导公式记背诀窍:奇变偶不变,符号看象限
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b.
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt.
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S.g=S-ft.
六、常用公式:(不全,希望有人补充)
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)