高中数学必修三教学设计(优秀6篇)
高中数学必修三教学设计 篇一
标题:概率与统计教学设计:从基础知识到解决实际问题
引言:概率与统计是高中数学必修三的重要内容,涉及到日常生活中的数据分析和预测。本教学设计旨在通过从基础知识到解决实际问题的过程,帮助学生全面掌握概率与统计的概念和方法。
一、教学目标:
1. 理解概率与统计的基本概念,包括:样本空间、事件、概率、频率、分布等;
2. 掌握概率计算方法,包括:古典概型、几何概型、连续型概型等;
3. 熟练运用统计方法,包括:数据收集、整理、分析和解读;
4. 培养学生的数据分析和问题解决能力。
二、教学内容:
1. 概率基础知识的讲解和练习:样本空间、事件、概率的定义和性质;
2. 概率计算方法的介绍和实践:古典概型、几何概型、连续型概型的应用;
3. 统计方法的学习和应用:数据收集、整理、分析和解读;
4. 实际问题的解决:通过案例分析和实际问题的讨论,提高学生的问题解决能力。
三、教学过程:
1. 概率基础知识讲解:通过教师讲解、示范和案例分析,引导学生理解样本空间、事件、概率等基本概念;
2. 概率计算方法练习:提供一些简单的问题,让学生通过计算和实践,掌握古典概型、几何概型、连续型概型的计算方法;
3. 统计方法学习和应用:教师引导学生了解数据的收集、整理、分析和解读方法,通过实际数据的处理,让学生掌握统计方法的应用;
4. 实际问题的解决:教师提供一些实际问题,引导学生分析和解决问题,培养学生的问题解决能力。
四、教学评价:
1. 课堂表现评价:通过学生的课堂参与、回答问题的准确性和深度,评价学生对概率与统计基础知识的理解程度;
2. 练习和作业评价:通过学生的练习和作业完成情况,评价学生对概率计算和统计方法的掌握程度;
3. 实际问题解决评价:通过学生在实际问题解决过程中的思考和表现,评价学生的问题解决能力和应用能力。
总结:通过本教学设计,学生将能够全面掌握概率与统计的基本概念和方法,并能够运用于解决实际问题,提高数据分析和问题解决能力。
高中数学必修三教学设计 篇二
标题:解析几何教学设计:从基础概念到几何证明
引言:解析几何是高中数学必修三的重要内容,涉及到平面和空间中的图形性质和几何证明。本教学设计旨在通过从基础概念到几何证明的过程,帮助学生全面掌握解析几何的概念和方法。
一、教学目标:
1. 理解平面和空间中的基本概念,包括:点、直线、平面、图形等;
2. 掌握解析几何的基本方法,包括:坐标表示、距离公式、斜率公式等;
3. 熟练运用解析几何的方法,包括:直线的方程、点与直线的位置关系、图形的性质等;
4. 培养学生的几何证明能力,包括:直线的垂直与平行性质、三角形的性质等。
二、教学内容:
1. 基础概念的讲解和练习:点、直线、平面、图形等基本概念的定义和性质;
2. 解析几何的基本方法介绍和实践:坐标表示、距离公式、斜率公式的应用;
3. 解析几何的进阶方法学习和应用:直线的方程、点与直线的位置关系、图形的性质等;
4. 几何证明的训练:通过几何证明的案例分析和实践,提高学生的几何证明能力。
三、教学过程:
1. 基础概念的讲解:通过教师讲解、示范和案例分析,引导学生理解点、直线、平面、图形等基本概念;
2. 解析几何的基本方法练习:提供一些简单的问题,让学生通过计算和实践,掌握坐标表示、距离公式、斜率公式的应用;
3. 解析几何的进阶方法学习和应用:教师引导学生了解直线的方程、点与直线的位置关系、图形的性质等进阶方法,通过实际问题的处理,让学生掌握解析几何的应用;
4. 几何证明的训练:教师提供一些几何证明的案例,引导学生进行证明过程的分析和讨论,培养学生的几何证明能力。
四、教学评价:
1. 课堂表现评价:通过学生的课堂参与、回答问题的准确性和深度,评价学生对解析几何基础概念的理解程度;
2. 练习和作业评价:通过学生的练习和作业完成情况,评价学生对解析几何基本方法的掌握程度;
3. 几何证明评价:通过学生在几何证明过程中的思考和表现,评价学生的几何证明能力和逻辑推理能力。
总结:通过本教学设计,学生将能够全面掌握解析几何的基本概念和方法,并能够进行几何证明,提高逻辑推理和问题解决能力。
高中数学必修三教学设计 篇三
教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化. 教学难点:除k取余法的理解以及各进位制之间转换的程序框图及其程序的设计.
教学过程:
一、复习准备:1. 试用秦九韶算法求多项式52()42f_x???
当3x?时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢?
二、讲授新课:1. 教学进位制的概念:①进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制.
同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139??②一般地,任意一个k进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即110110()110110...(0,0,...,,)nnnnknnnnaaaaakaaakakakakak?????????????????.
如:把(2)110011化为十进制数,(110011=1?25+1?24+0?23+0?22+1?21+1?20=32+16+2+1=51. 把八进制数(8)7348化为十进制数,3210(8)7348783848883816?????????.
2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数. (学生板书?教师点评?师生共同总结将非十进制转为十进制数的方法)分析此过程的算法过程,编写过程的程序语言. 见P34 ②练习:将(5)2341、(3)121转化成十进制数. ③例2、把89化为二进制数. 分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)
上述方法也可以推广为把十进制化为k进制数的算法,这种算法成为除k取余法. ④练习:用除k取余法将89化为四进制数、六进制数. ⑤例3、把二进制数(2)11011.101化为十进制数. 解:4(2)11011.101121202121212021227.625.
(小数也可利用上述方法化进行不同进位制之间的互化. )变式:化为八进制?方法:进制互化3. 小结:进位制的定义;进位制之间的互化.
三、巩固练习:1、练习:教材P35第3题
四、作业:教材P38第3题
高中数学必修三教学设计 篇四
三维目标:
1、知识与技能: 正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
2、过程与方法: (1)能够从现实生活或其他学科中提出具有一定价值的统计问题; (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取 样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
教学方法:讲练结合法
教学用具:多媒体
课时安排:1课时
教学过程:
一、问题情境
假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做? 显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?
二、探究新知
1、统计的有关概念: 总体:在统计学中,所有考察对象的全体叫做总体. 个体:每一个考察的对象叫做个体. 样本:从总体中抽取的一部分个体叫做总体的一个样本. 样本容量:样本中个体的数目叫做样本的容量. 统计的基本思想:用样本去估计总体.
2、简单随机抽样的概念 一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
下列抽样的方式是否属于简单随机抽样?为什么? (1)从无限多个个体中抽取50个个体作为样本。 (2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。 (3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)
3、常用的简单随机抽样方法有:
(1)抽签法的定义。 一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
思考? 你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗? 例1.若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏, 请设计一个抽取的方法,要使得每位同学被抽到的机会相等。
分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上, 折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可. 基本步骤:第一步:将总体的所有N个个体从1至N编号; 第二步:准备N个号签分别标上这些编号,将号签放在容器中 搅拌均匀后每次抽取一个号签,不放回地连续取n次; 第三步:将取出的n个号签上的号码所对应的n 个个体作为样 本。
(2)随机数法的定义: 利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。 怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。 第一步,先将800袋牛奶编号,可以编为000,001,…,799。
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28 第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;
继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
三、课堂练习
四、课堂小结
1.简单随机抽样的概念 一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
2.简单随机抽样的方法:抽签法 随机数表法
五、课后作业
P57 练习 1、2
六、板书设计
1、统计的有关概念
2、简单随机抽样的概念
3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法
4、课堂练习
高中数学必修三教学设计 篇五
一. 学习目标
(1)通过实例体会分布的意义与作用; (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图,频率折线图; (3)通过实例体会频率分布直方图,频率折线图,茎叶图的各自特点,从而恰当的选择上述方法分析样本的分布,准确的作出总体估计。
二. 学习重点
三.学习难点
能通过样本的频率分布估计总体的分布。
四.学习过程 (一)复习引入
(1 )统计的核心问题是什么?
(2 )随机抽样的几种常用方法有哪些?
(3)通过抽样方法收集数据的目的是什么?
(二)自学提纲
1.我们学习了哪些统计图?不同的统计图适合描述什么样的数据?
2.如何列频率分布表?
3.如何画频率分布直方图?基本步骤是什么?
4.频率分布直方图的纵坐标是什么?
5.频率分布直方图中小长方形的面积表示什么?
6.频率分布直方图中小长方形的面积之和是多少?
(三)课前自测
1.从一堆苹果中任取了20只,并得到了它们的质量(单位:g)数据分布表如下:
分组 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 频数 1 2 3 10 1 则这堆苹果中,质量不小于120g的苹果数约占苹果总数的__________%. 2.关于频率分布直方图,下列说法正确的是( ) A.直方图的高表示该组上的个体在样本中出现的频率 B.直方图的高表示取某数的频率 C.直方图的高表示该组上的样本中出现的频率与组距的比值 D.直方图的高表示该组上的个体在样本中出现的频数与组距的比值 3.已知样本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么频率为0.2的范围是( ) A、5.5-7.5 B、7.5-9.5 C、9.5-11.5 D、11.5-13.5 (四)探究教学 典例:城市缺水问题(自学教材65页~68页)
问题1.你认为为了较为合理地确定出这个标准,需要做哪些工作? 2.如何分析数据?根据这些数据你能得出用水量其他信息吗? 知识整理: 1.频率分布的概念: 频率分布: 频数: 频率:
2.画频率分布直方图的步骤: (1).求极差: (2).决定组距与组数 组距: 组数: (3).将数据分组 (4).列频率分布表 (5).画频率分布直方图 问题: .
1.月平均用水量在2.5—3之间的频率是多少?
2.月均用水量最多的在哪个区间?
3.月均用水量小于4.5 的频率是多少?
4.小长方形的面积=?
5.小长方形的面积总和=?
6.如果希望85%以上居民不超出标准,如何制定标准?
7.直方图有那些优点和缺点?
例题讲解: 例1有一个容量为50的样本数据的分组的频数如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少? (4)数据小于21.5的百分比是多少?
3.频率分布折线图、总体密度曲线 问题1:如何得到频率分布折线图 ? 频率分布折线图的概念:
问题2:在城市缺水问题中将样本容量为100,增至1000,其频率分布直方图的情况会有什么变化?假如增至10000呢?
总体密度曲线的概念:
注:用样本分布直方图去估计相应的总体分布时,一般样本容量越大,频率分布直方图就会无限接近总体密度曲线,就越精确地反映了总体的分布规律,即越精确地反映了总体在各个范围内1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。
4. 茎叶图 茎叶图的概念: 茎叶图的特征:
小结:.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
课堂小结:
当堂检测:
1. 一个社会调查机构就某地居民的月收入调查了10000人, 并根据所得数据画了样本的频率分布直方图(如下图)。 为了分析居民的收入与年龄、学历、职业等方面的关系, 要从这10000人中再用分层抽样方法抽出100人作进一步 调查,则 [2500,3000)(元)月收入段应抽取 人。
2、为了解某校高三学生的视力情况,随机抽查了该校200名高三学生的视力情况,得到频率分布直方图(如图), 由于不慎将部分数据丢失,但知道前四组的频数成等比数 列,后6组的频数成等差数列,设最多一组学生数为a,视 力在4.6到5.0之间的频率为b,则
a+b= . 3.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则ba?=______. 4.为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181
(1)列出样本的频率分布表。
(2)画出频率分布直方图。
(3)画频率分布折线图;