物理优秀知识点【经典6篇】
物理优秀知识点 篇一
引言:
物理作为自然科学的重要分支,研究的是物质、能量及它们之间的相互关系。在学习物理的过程中,我们会接触到许多优秀的知识点,以下是其中的一些。
知识点一:牛顿第一定律
牛顿第一定律,也被称为惯性定律,指出一个物体如果没有外力作用,将保持静止或匀速直线运动的状态。这意味着物体的速度和方向将保持不变,直到有外力作用于它。这个定律对我们理解物体的运动提供了基础。
知识点二:阿基米德原理
阿基米德原理是描述物体浮力的定律。它指出浸没在流体中的物体受到的浮力等于所排除流体的重量。简单来说,当一个物体浸没在流体中时,它会受到一个向上的浮力,这个浮力的大小等于被物体所排除的流体的重量。这个原理对于解释物体在液体中的浮沉现象非常重要。
知识点三:电磁感应定律
电磁感应定律是描述磁场变化引起的感应电动势的定律。根据法拉第电磁感应定律,当一个导体线圈或导体的磁通量发生变化时,会在导体中产生感应电动势。这个定律是电磁感应现象的基础,也是电磁感应发电机和变压器等电器设备的基本原理。
知识点四:量子力学
量子力学是描述微观世界中粒子行为的物理学理论。它提出了波粒二象性的概念,即粒子既具有粒子性又具有波动性。量子力学的发展对于解释原子和分子的结构、光的性质以及粒子的行为等方面都有重要的贡献。它是现代物理学的基石之一。
结论:
以上所介绍的物理优秀知识点只是众多知识点中的一小部分。通过学习这些知识点,我们可以更好地理解物理世界的运行规律,为我们解决实际问题提供了基础。同时,这些知识点也展示了物理学的深度和广度,激发了人们对于科学的探索和研究的兴趣。
物理优秀知识点 篇二
引言:
物理是一门研究物质和能量之间相互关系以及它们的性质和运动规律的科学,涉及到广泛的领域。在学习物理的过程中,我们会接触到许多优秀的知识点,以下是其中的一些。
知识点一:相对论
相对论是由爱因斯坦提出的物理学理论,它描述了物体在高速运动时的行为。相对论提出了时间和空间的相对性,即它们的测量结果与观察者的运动状态有关。相对论对于理解宇宙的运行和预测粒子加速器中的高能物理实验结果非常重要。
知识点二:热力学
热力学是研究能量转换和能量流动规律的科学。它研究了物体的热平衡、热力学循环和热力学性质等方面。热力学的发展为我们理解能量转化的原理提供了基础,也为我们设计高效能量系统和解决环境问题提供了理论支持。
知识点三:量子力学
量子力学是描述微观世界中粒子行为的物理学理论。它提出了波粒二象性的概念,即粒子既具有粒子性又具有波动性。量子力学的发展对于解释原子和分子的结构、光的性质以及粒子的行为等方面都有重要的贡献。它是现代物理学的基石之一。
知识点四:电磁学
电磁学是研究电荷和电磁场相互作用的科学。它包括静电学、电流学和电磁波等方面。电磁学的应用非常广泛,如电力工程、通信技术和电子设备等。电磁学的发展为我们理解电磁现象和设计电子设备提供了基础。
结论:
以上所介绍的物理优秀知识点只是众多知识点中的一小部分。通过学习这些知识点,我们可以更好地理解物理世界的运行规律,为我们解决实际问题提供了基础。同时,这些知识点也展示了物理学的深度和广度,激发了人们对于科学的探索和研究的兴趣。
物理优秀知识点 篇三
说明:高中物理的确难,实用口诀能帮忙。物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。整理、修改、补充。删除了部分与新课标不相符的内容。楷体字加粗的,是补充或修改的内容。增补了运动的描述、恒定电流、变压器和热力学定律等内容。
一、运动的描述
1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。
3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
二、力
1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。
多力问题状态揭,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。
三、牛顿运动定律
1.F等ma,牛顿二定律,产生加速度,原因就是力。
合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。
2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零
四、曲线运动、万有引力
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
五、机械能与能量
1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。
2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。
3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。
六、电场 〖选修3--1〗
1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。
2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。
电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。
场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。
4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。
七、恒定电流〖选修3-1〗
1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。
正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。
2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。
电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。
3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。
4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。
路端电压内压降,和就等电动势,除于总阻电流是。
八、磁场〖选修3-1〗
1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。
2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。
3.BIL安培力,相互垂直要注意。
4.洛仑兹力安培力,力往左甩别忘记。
九、电磁感应〖选修3-2〗
1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。
感应电动势大小,磁通变化率知晓。
2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。
3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。
十、交流电〖选修3-2〗
1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。
中性面计时是正弦,平行面计时是余弦。
2.NBSω是最大值,有效值用热量来计算。
3.变压器供交流用,恒定电流不能用。
理想变压器,初级U I值,次级U I值,相等是原理。
电压之比值,正比匝数比;电流之比值,反比匝数比。
运用变压比,若求某匝数,化为匝伏比,方便地算出。
远距输电用,升压降流送,否则耗损大,用户后降压。
如何复习物理才能达到高效率
物理注重考查学生对基础概念和原理的了解,注重从生活走向物理,从物理走向社会,强调学生解决实际问题的能力。
一、既要突出重点,又要注意知识的覆盖面
物理中考10个重点知识的分布:力学部分4个重点:力;二力平衡;密度;压强。光学部分2个重点:光的反射;凸透镜成像。热学部分1个重点:比热容。电学部分3个重点:串、并联电路特点;欧姆定律;测小灯泡功率。
例如,填空题和选择题的最后一题,往往会考核简单电路故障分析或电路动态分析的题目及水平面上立方体对地面压强变化等难题。在复习中要把握题目的难易程度,盲目地进行大运动量的题海战术,是不值得采用的低效的复习策略。
二、既要加强基础,又要注意能力的培养
现在的试题十分注重概念和规律的形成过程和对实验的过程的考核。例如,在考查压强概念的的形成过程时,题目中总是说“研究压力的作用效果”,你在答题时就只能提“压力的作用效果”,却不能说“压强”,因为考核的过程中压强的概念尚未建立。试题还经常以科技、社会、生活问题为情景,这就需要我们关注生活中的物理现象。例如在皮划艇比赛中,握桨时上方的手与桨的触点相当于杠杆的支点,桨相当于费力杠杆。
三、既要重视实验过程,又要重视科学方法
物理实验,是物理研究的重要方法,也是物理学习的主要途径。通过考核实验的过程,可以检验我们是否真正理解实验的目的、要求、原理、实验器材、操作的步骤、数据的记录处理和归纳总结、结论的得出等。在物理实验的过程中,往往还会体现出各种科学方法的应用。例如在建立比热概念的实验过程中,采用酒精灯放在与两杯液体等距处隔着铝板加热,这样做的目的体现了控制变量法的思想:使水和煤油在每1秒钟内吸收的热量都相等。在实验过程中,同样为了体现控制变量法的思想,要求水和煤油的质量相等、升高的温度相等。许多同学误以为必须使初温相等,其实初温是否相等并不影响实验结果。
四、既要提高思维能力、又要提高书面文字表达能力
近年考试特别重视对实验的归纳能力的考核,因此对思维能力有一定的要求。这些题目,往往体现在对考生有一定区分度的题目中。所以,要想获得较高的考分,一定要注意提高自己的思维能力。
物理优秀知识点 篇四
一、光在同种均匀介质中沿直线传播;
1、光线:表示光传播路线的直线;
2、光束:在真空中光的传播速度c=3.0108m/s;
3、光的折射定律:光从一介质进入另一介质时,传播路线要发生改变,入射光线和折射光线分居法线的两侧;从光密质进入光疏质时,入射角小于折射角;
(1)入射角:图射光线和法线间的加角;(2)折射角:折射光线和法线间的夹角;
(2)折射率n=c/v=sini/sinr(大的除以小的);
4、光密质:折射率大的介质;
5、光疏质:折射率较大的介质;
二、全反射:光从光密质进入光疏质时,当入射角大于零界角时,只有反射光线没有折射光线的现象;
1、发生全反射的条件:(1)光从光密质进入光疏质;(2)入射角大于临界角;
2、临界角:当折射角等于90时的入射角;sinaC=1/n;
3、特例:海市蜃楼、光导纤维;
三、光的色散:当白光经过三棱镜后能形成彩色个光带,这个现象叫色散;
1、发生色散后在光屏上从上至下,依次是红、橙、黄、绿、蓝、靛、紫;
2、从红到紫光的频率由小到大;波长由大到小;
3、在同种介质中,折射率由小到大;传播速度由大到小;
4、从红光到紫光衍射现象逐渐减弱;
物理优秀知识点 篇五
1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);
2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;
3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)
6、1638年,伽利略在《两种新科学的对话》一书中,运用观察—假设—数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;
9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;
10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
11、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。
12、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
13、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
14、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。
选修部分:(选修3—1、3—2、3—3、3—4、3—5)
二、电磁学:(选修3—1、3—2)
1、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。
2、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
3、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
4、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
5、1826年德国物理学家欧姆(1787—1854)通过实验得出欧姆定律。
6、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
7、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。
8、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。
9、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。
10、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
11、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。
12、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
13、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。
14、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
15、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。
16、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。
物理优秀知识点 篇六
1.功
(1)功的定义:力和作用在力的方向上通过的位移的乘积.是描述力对空间积累效应的物理量,是过程量.
定义式:W=F·s·cosθ,其中F是力,s是力的作用点位移(对地),θ是力与位移间的夹角.
(2)功的大小的计算方法:
①恒力的功可根据W=F·S·cosθ进行计算,本公式只适用于恒力做功.②根据W=P·t,计算一段时间内平均做功. ③利用动能定理计算力的功,特别是变力所做的功.④根据功是能量转化的量度反过来可求功.
(3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.
发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d是两物体间的相对路程),且W=Q(摩擦生热)
2.功率
(1)功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.
(2)功率的计算 ①平均功率:P=W/t(定义式) 表示时间t内的平均功率,不管是恒力做功,还是变力做功,都适用. ②瞬时功率:P=F·v·cosα P和v分别表示t时刻的功率和速度,α为两者间的夹角.
(3)额定功率与实际功率 : 额定功率:发动机正常工作时的最大功率. 实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率.