分数除法教案【优质6篇】

分数除法教案 篇一

分数除法是数学中一个重要的概念,它涉及到如何将一个分数除以另一个分数。在这篇教案中,我们将详细介绍分数除法的概念、原理和运算方法,并提供一些练习题供学生练习。

1. 概念介绍

分数除法是指将一个分数除以另一个分数,求得商的运算方法。其中,被除数为分数的除法称为真分数除法,被除数为整数的除法称为带分数除法。

2. 原理解释

分数除法的原理可以通过乘法的逆运算来理解。即,将除法问题转化为乘法问题。例如,求分数a除以分数b的结果,可以转化为求分数a乘以分数b的倒数的结果。

3. 运算方法

(1)真分数除法:将两个真分数相除,首先需要将两个分数的分母化为相同的值,然后将分子相除得到结果的分子,分母保持不变。

例如,计算1/2 ÷ 1/3,首先将两个分数的分母化为相同的值,得到2/6 ÷ 3/6,然后将分子相除得到2 ÷ 3,即结果为2/3。

(2)带分数除法:将一个带分数除以一个真分数,可以先将带分数转化为假分数,然后按照真分数除法的方法进行计算。

例如,计算3 1/2 ÷ 1/4,首先将带分数转化为假分数,得到7/2 ÷ 1/4,然后按照真分数除法的方法进行计算,得到(7/2)×(4/1),即结果为14。

4. 练习题

(1)计算以下分数除法:

a) 2/3 ÷ 1/4

b) 5/6 ÷ 2/5

c) 7/8 ÷ 3/4

(2)解答以下带分数除法:

a) 2 1/3 ÷ 1/2

b) 4 2/5 ÷ 1/3

c) 3 3/4 ÷ 2/5

通过这些练习题,学生们可以巩固分数除法的概念和运算方法,并提高他们的计算能力。

分数除法教案 篇二

分数除法是数学中重要的一个概念,它在实际生活中有很多应用。在这篇教案中,我们将讨论分数除法的实际应用,并提供一些例题供学生练习。

1. 分数除法的实际应用

分数除法在日常生活中有很多应用。例如,当我们需要将一块蛋糕平均分给几个人时,就需要用到分数除法。又如,当我们需要计算每个人的体重占总体重的比例时,也需要用到分数除法。分数除法还可以应用于商业领域中的利润分配、成本分摊等问题。

2. 实际应用例题

(1)例题1:小明买了一块蛋糕,他打算将它平均分给他和他的三个朋友。如果蛋糕的重量为1 1/2磅,每个人得到的蛋糕重量是多少?

解答:根据分数除法的原理,我们可以将1 1/2磅转化为3/2磅,然后将3/2磅除以4(人数),得到3/8磅。因此,每个人得到的蛋糕重量为3/8磅。

(2)例题2:某公司三个股东的股份比例分别为1/3、1/4和1/6,他们共同投入了100万元用于公司的运营。如果公司的利润为80万元,按照各股东的股份比例,他们每个人分得多少利润?

解答:根据分数除法的原理,我们可以将利润80万元按照股份比例分配。首先计算总股份为1/3 + 1/4 + 1/6 = 9/12,然后将80万元除以9/12,得到(80万元)×(12/9),即每个股东分得的利润为约为106.67万元。

通过这些例题,学生们可以了解分数除法在实际生活中的应用,并且掌握如何使用分数除法解决实际问题。

分数除法教案 篇三

  一、复习

  1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

  如果已知265×362=95930,你能说出答案吗?为什么?

  (引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

  二、教学分数除法的意义

  1、2/7 ×( )=1,括号内填几分之几?为什么?

  2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

  (引导说出分数除法的意义)

  3、完成p25做一做

  三、分数除以整数的计算法则

  1、这节课我们学习分数除法

  2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

  3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

  3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

  你是根据什么知识口算这几道题的?

  4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

  出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

  怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

  根据学生的回答板书:

  3/4÷3 = 3÷34 = 1/4

  你能归纳这种分数除以整数的计算方法吗?

  5、用这种方法口算:

  3/4÷3 4/9÷4 10/9÷5 6/7÷2

  6、质疑

  你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

  7、小组讨论,自主学习分数除以整数

  用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

  (1)分数除以整数,用分子除以整数的商作分子,分母不变。

  (2) 1除以一个分数,结果是该分数的倒数。

  (3)一个分数除以1,结果是原分数。

  你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

  8、小组汇报

  (1)1/5 ÷3=3/15 ÷3=1/15

  (2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

  (3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  (4) ……

  你能归纳自己小组讨论的分数除以整数的计算方法吗?

  (1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

  (2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

  (3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

  (4)……

  9、观察第三种方法:

  1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  这个计算过程还可以更简洁些,你能看出来吗?

  化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

  观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

  (引导学生说出分数除以整数,等于分数乘整数的倒数)

  10、计算方法的优化

  刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

  学生计算后提问:你喜欢那种方法?为什么?

  总结分数除以整数的计算法则:

  分数除以整数(零除外),等于分数乘整数的倒数。

  11、对其他的方法,你又有什么要说的吗?

  (引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

  四、课堂练习

  1、计算下列各题

  2/3÷3 2/11÷2 3/8÷6 5/4÷2

  2、练习七第1题

  3、讨论题

  1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案 篇四

  教学目标:

  1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

  2、口算下面各题

  ×3 × ×

  × ×6 ×

  二、新知探究

  (一)、教学例1

  1、课件出示自学提纲:

  (1)出示插图及乘法应用题,学生列式计算。

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  2、学生自学后小组间交流

  3、全班汇报:

  100×3=300(克)

  A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

  B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

  ×3= (千克) ÷3= (千克) ÷3=3(盒)

  4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

  分数除法的意义与整数除法相同,都是已知两个因数的积与其

  中一个因数,求另个一个因数。都是乘法的逆运算。

  (二)、巩固分数除法意义的练习:P28“做一做”

  (三)、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

  A、 ÷2= =,每份就是2个。

  B、 ÷2= × =,每份就是的。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、当堂测评(课件出示)

  1、计算

  ÷3 ÷3 ÷20 ÷5 ÷10 ÷6

  2、解决问题

  (1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

  (2)、正方形的周长是4/5米,它的边长是多少米?

  学生独立完成。

  教师讲评,小组间批阅。

  四、课堂总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

  教学后记

分数除法教案 篇五

  【教学内容】

  【教学目标】

  知识目标:

  体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  能力目标:

  培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  【教学重点】

整数除以分数的计算法则推导过程。

  【教学难点】

理解一个数除以分数的计算法则的推导过程,

  【教学过程】

  一、创设情境导入新课

  唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

  二、自主探究合作交流

  1、小组活动

  (1)出示教材27页“分一分”的第(1)、(2)题

  学生拿出准备好的圆片代表饼,动手分一分。

  每2张一份,可以分成多少份?4÷2=2(份)

  每1张一份,可以分成多少份?4÷1=4(份)

  师:每1/2张一份,可以分成多少份?

  学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

  师:每1/4张一份,可以分成多少份?

  学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

  4÷1/4=16(份)

  (1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

  (2)学生独立完成教材28页“填一填”“想一想”

  师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

  生:一个数除以分数等于乘这个分数的倒数。

  1、学生独立完成28页的“试一试”。

  集体反馈,同桌之间订正。

  师:通过刚才的计算你发现了什么?

  生:一个数除以一个数(零除外)等于乘这个数的倒数。

  三、课堂练习,巩固运用

  书本练一练

  四、课堂小结畅谈收获

  聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

  (学生谈收获)

  【板书设计】

  整数除以分数

  a÷=a×(b、c≠0)

  【教学反思】

  本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

  第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的.意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

  第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

  第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

  第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

分数除法教案 篇六

  教学目标:

  1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位1的量,会分析题中的数量关系。

  教学难点:

分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

  (1)吃了 是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。 解:设买来大米X千克。

  x- x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。 解:设航模小组有人。

  + =25

  (1+ )=25

  =25

  =20

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

相关文章

《古诗》教案(推荐3篇)

教学重点: 1、感悟诗人的爱国情怀 2、掌握诗歌的鉴赏方法 3、熟读背诵 学习过程: 春望 一、导入: 【诗人简介】 杜甫:字子美,为初唐诗人杜审言之孙。因诗中常自称少陵野老,又做过检校工部员外郎,故...
教案大全2013-08-04
《古诗》教案(推荐3篇)

平安暑假专题活动教案【优秀6篇】

作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教案,借助教案可以有效提升自己的教学能力。那要怎么写好教案呢?以下是小编帮大家整理的平安暑假专题活动教案,欢迎大家分享。  平安暑假专题活动教...
教案大全2012-09-09
平安暑假专题活动教案【优秀6篇】

开学第一课教案【精彩6篇】

编写教案能恰当地选择和运用教学方法,调动学生学习的积极性,面向大多数学生,同时注意培养优秀生和提高后进生,使全体学生都得到发展。以下是小编为大家收集的关于2022开学第一课教案的相关内容,供大家参考,...
教案大全2014-07-01
开学第一课教案【精彩6篇】

小班手工游戏教案【精简6篇】

手工指非机器设备批量生产而是由人工制作生产。手工指的是用手的技艺做的工作,而且可以锻炼小孩,让小孩变得心灵手巧。下面是小编整理的一篇关于手工游戏教学方案的设计,希望对大家有帮助。  小班手工游戏教案...
教案大全2014-09-04
小班手工游戏教案【精简6篇】

交通安全教育的教案(精彩6篇)

作为一名专为他人授业解惑的人民教师,编写教案是必不可少的,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编为大家收集的交通安全教育的教案,欢迎大家分享。交通安全教育的教案篇1活动目的:...
教案大全2018-09-02
交通安全教育的教案(精彩6篇)

《羚羊木雕》教案设计附反思【最新3篇】

一、教材分析 本文写的是子女与父母的冲突,其中是非曲直很值得分析研究一番。教学本文,要让学生在了解故事情节的基础上意识到文章所要表达的内容:我们怎样看待友谊,怎样看...
教案大全2018-07-08
《羚羊木雕》教案设计附反思【最新3篇】