六年级知识点归纳总结【实用3篇】
六年级知识点归纳总结 篇一
在六年级学习中,我们接触到了许多不同的知识点,这些知识点对我们的学习和成长都起到了重要的作用。下面我将对六年级的一些主要知识点进行总结归纳。
首先是语文知识点。在语文学科中,我们学习了很多文字的运用和表达技巧。我们学习了如何正确使用标点符号,如逗号、句号、问号等。我们还学习了不同的修辞手法,如比喻、拟人、夸张等,这些技巧可以使我们的表达更加生动有趣。此外,我们还学习了一些古诗文和现代文学作品,通过欣赏和分析这些作品,我们能够提高自己的审美能力和文学素养。
其次是数学知识点。数学是一门非常重要的学科,我们在六年级学习了很多数学知识。我们学习了整数的加减乘除运算,能够熟练地进行计算。我们还学习了分数的概念和运算规则,能够灵活地运用分数进行计算。此外,我们还学习了几何图形的性质和计算方法,能够正确地计算图形的周长和面积。这些数学知识不仅可以帮助我们在日常生活中解决问题,还可以培养我们的逻辑思维和分析能力。
再次是科学知识点。科学是一门探索自然规律的学科,在六年级我们学习了很多科学知识。我们学习了物质的性质和变化规律,了解了酸碱中和、溶解、凝固等现象的原理。我们还学习了植物的结构和功能,了解了光合作用、传粉等植物的生长和繁殖过程。此外,我们还学习了一些环保知识,了解了环境污染的原因和防治方法。这些科学知识可以帮助我们更好地了解和保护我们的环境。
最后是英语知识点。英语是一门国际通用的语言,我们在六年级学习了很多英语知识。我们学习了基本的单词和句型,能够进行简单的对话和交流。我们还学习了一些常用的语法知识,如时态、语态、比较级等,能够正确地运用这些语法知识进行语言表达。此外,我们还学习了一些英语文化和习俗,了解了不同国家和地区的文化差异。这些英语知识可以帮助我们更好地与他人交流和了解世界。
通过对六年级的知识点的总结归纳,我们可以发现,在学习的过程中,我们接触到了许多不同的知识领域,这些知识点在我们的学习和成长中起到了重要的作用。我们要继续努力学习,不断提高自己的知识水平,为将来的发展打下坚实的基础。
六年级知识点归纳总结 篇二
六年级是一个重要的学习阶段,我们学习了许多不同的知识点,这些知识点对我们的学习和成长都起到了重要的作用。下面我将对六年级的一些主要知识点进行总结归纳。
首先是历史知识点。在六年级学习中,我们学习了中国古代的历史文化知识。我们学习了中国古代的朝代和历史事件,了解了秦朝的统一、汉朝的繁荣和唐朝的开放等重要历史时期。我们还学习了一些历史人物和历史事件,如孔子、项羽、三国演义等,通过了解这些历史人物和事件,我们能够更好地了解中国的历史文化。
其次是地理知识点。地理是一门研究地球和人类活动的学科,我们在六年级学习了很多地理知识。我们学习了中国的地理位置和地形特点,了解了中国的东、南、西、北四大方位和黄河、长江等重要河流的流域和流经的省份。我们还学习了一些国家和地区的地理特点和发展情况,如美国、欧洲、非洲等,通过了解这些国家和地区,我们能够更好地了解世界的地理格局。
再次是道德与法治知识点。道德与法治是一门研究人类行为规范和法律法规的学科,我们在六年级学习了一些道德与法治知识。我们学习了一些基本的道德准则和行为规范,如诚实守信、友善互助等,通过学习这些道德准则,我们能够养成良好的道德品质和行为习惯。我们还学习了一些法律法规和法治知识,如宪法、治安法等,了解了法律的作用和意义。通过学习这些法律法规和法治知识,我们能够更好地维护自己的权益和社会的公平正义。
最后是艺术知识点。艺术是一门研究审美和创造的学科,我们在六年级学习了一些艺术知识。我们学习了一些绘画和音乐的基本知识和技巧,如色彩搭配、线条表现、音乐节奏等,通过学习这些知识和技巧,我们能够更好地欣赏和创造艺术作品。我们还学习了一些舞蹈和戏剧的基本知识和表演技巧,通过学习这些知识和技巧,我们能够更好地表达自己的情感和创造力。
通过对六年级的知识点的总结归纳,我们可以发现,在学习的过程中,我们接触到了许多不同的知识领域,这些知识点在我们的学习和成长中起到了重要的作用。我们要继续努力学习,不断提高自己的知识水平,为将来的发展打下坚实的基础。
六年级知识点归纳总结 篇三
六年级知识点归纳总结
第一单元 分数乘法
1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(为了计算简便,能约分的要先约分,然后再乘。)
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b ca c + b c = ( a + b )×c
6.乘积是1的两个数互为倒数。
7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 1的倒数是1。0没有倒数。
真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
8.一个数(0除外)乘以一个真分数,所得的积小于它本身。
9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
10.一个数(0除外)乘以一个带分数,所得的积大于它本身。
11.分数应用题一般解题步骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(以后称为“标准量”) 找单位“1”: 在分率句中分率的前面;或“是”、“占”、 “比” 、“ 相当于”的后面
(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准
量与比较量不是整体与部分的关系画两条线段即可。(4)根据线段图写出等
量关系式:标准量×对应分率=比较量。求一个数的几倍: 一个数×几倍;求一个数的几分之几是多少: 一个数×
写数量关系式技巧:
(1)“的” 相当于“×”“占”、“是”、“比”相当于“ = ”
(2)分率前是“的”: 单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思: 单位“1”的量×(1分率)=分率对应量
(5)根据已知条件和问题列式解答。
12.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? 单
位“1”×对应分率=对应量
(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前 “是、
比、相当于、占、等于”后的规则。 几。 几
(3)甲比乙多几分之几?计算方法是:(甲-乙)÷乙 = 甲÷乙-1
甲比乙少几分之几?计算方法是:(甲-乙)÷甲 = 1-乙÷甲
(4)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”
等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(5)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
(6)乘法应用题中,单位“1”是已知的。
(7)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是
比较,单位一致”的规则。
(8)分率与量要对应。
第二单元 位置
1、1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。横行竖列,从左往右数列,从前往后数行。
2、数对(x,y)表示第x列第y行,先列后行。
3、描述、描绘物体位置或方向:找参照物
1)画坐标、找方向
2)比例尺
3)先找方向,再找距离,最后标示物体
注意:找角:例东偏北,量角器0刻度线与东重合(找前一个方向重合)
4、位置的相对性:改变参照物:方向对应变成相反的方向,度数、距离都不变; 不改变参照物:方向交换位置,度数变成90减去原度数,距离不变
5、路线四要素:起点、方向、距离、目的地(逆向用位置的相对性)
注意:做题要先标出参照物,每个参照物要画坐标
第三单元分数除法
1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两
个因数的积与其中一个因数,求另一个因数的运算。
2.分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘以
这个分数的倒数。
3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。
4.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5.已知一个数的几分之几是多少?求这个数用除法计算。例如:一桶水用了55,刚好
12升,这桶水共有多少升?12÷5的`方法计算。
6.用单位“1”来判定:单位“1”位置时用除法计算。例如:新前程美语中学十二份
用电300度,比十一月份多用5,十一月份用电多少度?分析:这里的单位“1”是 十二月份和十一月份比的十一月份是单位“1”是题目中的未知量,也就是要求的量。
所以用除法计算列式是300÷(1+5 )。
7.例如:学校买来一些篮球和足球,足球共有24个,比 篮球少7 ,篮球有多少个?
这里的单位“1”是用足球和篮球比,所以篮球是单位“1”,也是未知量 ,所以用除法计算。列式是:24÷(1-7 )。 第四单元比和比的应用
1. 两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。比值常用分数、小数和整数表示。
2. 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3. 用比的基本性质可以将比化简。
4.比的应用:在工农业生产中和日常生活中,常常需要把一个数量按照一
定的比来进行分配。这种方法通常叫做按比例分配。
1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,
求这两个或这几个数量是多少?
例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?
题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5人或者:
第二步求男女生:男生:5×5=25人女生:5×7=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外
几个数量是多少?
例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班
共有多少人?
题目解析:“男生25人”就是其中的一个数量。
解题思路:第一步求每份:25÷5=5人
第二步求女生: 女生:5×7=35人。 全班:25+35=60人
3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?
例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?
男生人数:20÷(7-5)×7=70 (人)女生人数:20÷(7-5)×5=50(人)
第四单元圆
1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。 圆心一般用字母O表示。它到圆上任意一点的距离都相等。
3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r 或r=d 9.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固
定的数。我们把圆的周长和直径的比值叫做圆周率,它是一个无限不循环小数,用字母π表示。在计算时,取π ≈ 3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。11.圆的周长公式:C= πd或C=2πr
12、圆的面积:圆所占面积的大小叫圆的面积。