小学五年级奥数学习的学习重点和方法【优质3篇】
小学五年级奥数学习的学习重点和方法 篇一
在小学五年级的奥数学习中,培养学生的数学思维能力和解题能力是学习的重点。下面将介绍一些学习的方法和技巧,帮助学生更好地掌握奥数知识。
首先,数学思维训练是学习奥数的关键。奥数注重培养学生的逻辑思维和创造性思维,让学生能够从不同的角度解决问题。为了培养学生的逻辑思维能力,可以通过做一些逻辑题来训练。逻辑题通常包括推理、关系和概念等方面,学生需要根据提供的信息进行推理和判断。而培养学生的创造性思维能力,可以通过给学生一些开放性的问题,让他们自由发挥和思考,寻找不同的解决方法。这样的训练可以提高学生的思维敏捷性和解决问题的能力。
其次,掌握数学基础知识是学习奥数的前提。在小学五年级,学生已经学习了一些基础的数学知识,如加减乘除、分数、小数等。在学习奥数之前,学生需要对这些基础知识有一定的掌握。因为奥数题目通常会涉及到这些基础知识的应用,如果基础不扎实,就很难解决问题。所以,在学习奥数之前,学生需要复习和巩固这些基础知识,做到熟练掌握。
另外,刷题是学习奥数的重要方法。通过大量的练习和实践,可以帮助学生熟悉奥数题目的类型和解题思路。在刷题的过程中,学生可以遇到各种各样的问题,从中学习和积累解决问题的方法和技巧。同时,刷题还可以提高学生的反应速度和解题效率,增强他们的数学思维能力。
最后,要培养学生的合作意识和团队精神。在奥数学习中,经常会有一些团队合作的活动,学生需要与其他同学一起解决问题。通过合作,学生可以交流和分享各自的思路和方法,互相借鉴和学习。同时,合作还可以培养学生的交流能力和团队合作精神,这些都是在解决问题中不可或缺的素质。
总之,在小学五年级的奥数学习中,培养学生的数学思维能力和解题能力是重点。通过合理的学习方法和技巧,可以帮助学生更好地掌握奥数知识,提高解题能力,为日后更高层次的数学学习打下坚实的基础。
小学五年级奥数学习的学习重点和方法 篇二
在小学五年级的奥数学习中,学生需要重点关注以下几个方面,以提高数学思维能力和解题能力。
首先,理解题目的意思和要求。在解题之前,学生需要仔细阅读题目,理解题目中所给出的信息和要求。有时候,题目中可能会包含一些限制条件或者附加条件,学生需要将这些条件和要求都考虑进去,才能得出正确的答案。所以,在解题之前,学生要先理清题意,搞清楚题目要求的是什么,然后再进行下一步的思考和计算。
其次,建立正确的解题思路。在解题的过程中,学生需要根据题目的要求和条件,建立一个正确的解题思路。这个思路可以是先化简题目,找出其中的规律,然后再用适当的方法进行计算和推理;也可以是先列出所有的可能性,然后逐一排除不符合条件的答案,最终得到正确的解答。建立正确的解题思路可以帮助学生更好地组织思维,减少解题过程中的错误和偏差。
另外,学会灵活运用数学方法和技巧。在解题的过程中,学生需要熟练掌握各种数学方法和技巧,并能够灵活运用。比如,在解决一些几何问题时,学生可以利用相似三角形的性质,通过比例关系来求解;在解决一些代数问题时,学生可以运用因式分解、配方法等技巧,简化计算过程。掌握这些数学方法和技巧可以提高解题效率,减少解题过程中的出错。
最后,多与他人交流和讨论。在学习奥数的过程中,学生可以多与他人交流和讨论,分享自己的思路和方法,借鉴他人的经验和技巧。通过与他人合作解题,可以开拓学生的思维,拓宽解题的思路。同时,交流和讨论还可以帮助学生发现和解决自己在解题过程中的错误和困惑,提高解题能力。
总之,在小学五年级的奥数学习中,学生需要重点关注理解题目、建立正确的解题思路、灵活运用数学方法和技巧,以及多与他人交流和讨论。通过合理的学习方法和技巧,学生可以提高数学思维能力和解题能力,更好地掌握奥数知识。
小学五年级奥数学习的学习重点和方法 篇三
五年级属于小学高年级,孩子进入五年级以后,随着年龄的增长,孩子的计算能力,认知能力,逻辑分析能力都比以前有很大的提高,这个时期是奥数思维形成的关键时期,是学奥数的黄金时段。所以要帮助孩子掌握合适的奥数学习方法。这里给大家介绍一些关于小学五年级奥数学习的学习重点和方法,希望对大家有所帮助。
学习重点难点解析
1.进入数学宝库的分析方法——递推方法。
任何事物的发展总是从简单到复杂,奥数也是一样,对于复杂问题,我们不妨先从最简单的情况入手,通过处理简单的问题,我们可以从中得到规律或者诀窍,从而来解决复杂的问题,这就是递推方法。比如说:平面上2008条直线最多有几个交点? 同学们第一眼看到这个问题时,肯定会想画2008条直线相交然后再数交点个数,那该是多麻烦啊! 其实我们可以先来解决简单点的情况,分别找到1条、2条、3条、4条……这些直线有多少个交点。
1条直线最多有0个交点 0
2条直线最多有1个交点 1
3条直线最多有3个交点 1+2=3
4条直线最多有6个交点 1+2+3=6
5条直线最多有10个交点 1+2+3+
4=106条直线最多有15个交点 1+2+3+4+5=15
……
所以2008条直线有1+2+3+4+5+…+2007=2015028个交点。
那么聪明的你,你能算出2008条直线最多可以把圆分成几部分么?
2.变化无穷、形迹不定的行程问题。
提到行程问题,同学们可能就感到头疼,的确不错,因为行程问题中各个物体的速度、时间、路程都在变化,而且各个物体都是在运动中,位置是随着时间在变化,所以分析起来就很麻烦,为了更好的解决这个问题,我们把行程问题进行了细分:基本行程(单个物体)、平均速度、相遇、追及、流水行船、火车过桥、火车错车、钟表问题、环形线路上行程。只要我们掌握这些每个小类型中的诀窍,形成一种分析思路,复杂的行程问题无非是这些类型的变形而已,解决起来就容易多了。
3.抽象而又杂乱的数论问题。
数论是从五年级的核心知识,无论是在哪本教材里,都用了很多的章节来讲解数论,要想解决复杂的数论问题,我们首先得掌握数论的基本知识:数的奇偶性、约数(现在叫因数)、倍数、公约数及最大公约数、公倍数及最小公倍数、质数、合数、分解质因数、整除、余数及同余等。这些基本知识点里又有些非常有代表性的例题,只要能掌握好这些知识点,然后做一定量的数论综合习题,碰到难的数论问题我们就容易解决了。
4.有趣的抽屉原理。
生活中有很多有趣的事情,比如说:把4个苹果放到3个抽屉里,无论你怎么放,总有某个抽屉里至少有2个苹果,这就是抽屉原理。
对于抽屉原理我们只要找到苹果的个数a与抽屉的个数b,我们就可以得到下面的结论:
若 a&pide;b=r……q
当q=0时,我们就说总有某个抽屉里至少有r个苹果;
当q 0时,我们就说总有某个抽屉里至少有(r+1)个苹果。
比如说把32个苹果放进8个抽屉里,因为32&pide;8=4,无论怎么放,总有某个抽屉里有4个苹果。如果把35个苹果放进8个抽屉里,因为35&pide;8=4……3,无论怎么放,总有某个抽屉里有4+1=5个苹果。
但是大部分的奥数题是没有告诉我们抽屉的个数的,那样我们就得自己构造抽屉,从而找出抽屉的个数。
5.图形面积计算。
求图形的面积也是奥数中的一个难点,对于这类题我们首先要掌握好各种基本图形的面积计算公式,然后记住一些重要的结论:比如说三角形的等积变形、直角三角形中30度所对的边是斜边的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中边与面积的关系。在计算面积时的方法有:直接计算法、割补法、方程法等。在图形面积计算中,难题往往得添加辅助线,这个就是难点所在,因为添加辅助线非常灵活,这就要我们多做些这方面的题,多积累一些添加辅助线的技巧,做到心中有数。
小学五年级奥数学习方法
首先,由简单入手。五年级的小学生一般都是以书本上的知识为主,但也有一部分学习想挑战一下奥数题。刚接触到奥数的同学们更好先从简单入手,不要刚开始上来的时候就做难题,这样不仅会打击自己的信心,对学习数学可能也会造成一定的影响,先把简单的奥数题做好,然后在逐渐的加深,这样可以增加对数学基础知识的理解。
其次,过渡要快。五年级的学生更开始接触奥数的时候不必按部就班,刚开始可以借助一些参考书和书本,对题型进行全面的理解,掌握一定的解题思路,概括一些知识点。但做简单的时间不要太长,这样会耽误你很多的时间,在对基础的奥数有所了解之后直接可以过渡到难一点的题型。
此外,重视基础。奥数可是小学数学竞争的资本,很多初中的奥数都是重视基础知识,有时也会延伸,这就需要你在小学的时候就打好基础,这样才能在初中的时候提升自己的学习成绩,小学的奥数多数都是基础部分比较多,所以一定要认真学习。
更后,举一反三。奥数是培养孩子思维方式更重要的,对待奥数的时候一定要会举一反三,很多同学做回一道题之后,不要做过就忘记,而是去分析,分析这一类的题目为什么要从这个角度去出发,为什么要用到这个知识点,以及这个知识点还适合用在哪一类的题目上面,这样才能够做一个类型的题目中的一两道题,而学会做这一类的题目。