小学二年级数学知识点【优秀6篇】
小学二年级数学知识点 篇一
在小学二年级的数学学习中,孩子们开始接触一些基础的数学知识和概念。这些知识点对于孩子们的数学发展和学习基础起着至关重要的作用。以下是小学二年级数学的几个重要知识点。
1. 数的认知和比较:在二年级,孩子们需要学会认识和理解数的概念。他们需要通过实物、手指和数字等形式来认识和表示数字。此外,他们还需要学会比较大小,使用符号“>”和“<”来比较两个数的大小。
2. 加减法运算:在二年级,孩子们开始学习加法和减法的基本运算。他们需要通过实际操作和绘画等方式来理解和解决简单的加减法问题。在学习加法时,孩子们需要通过数的合并来计算得出结果。而在减法中,他们需要通过数的分割来计算得出结果。
3. 数字的位置和顺序:在数学学习中,孩子们需要学会数字的位置和顺序。他们需要理解个位、十位和百位等概念,并能够正确地读写和表示三位数。此外,他们还需要学会按照数字的大小和顺序进行排序。
4. 数的分解和合并:在二年级,孩子们开始学习数的分解和合并。他们需要通过实际物品和图形等形式来理解数的组成和变化。通过分解和合并,他们可以更好地理解加法和减法运算的过程。
5. 时钟和时间:在二年级,孩子们开始学习时钟和时间的概念。他们需要学会读懂时钟上的小时和分钟,并能够根据时钟上的时间进行简单的时间计算。
以上是小学二年级数学的几个重要知识点。通过系统地学习和掌握这些知识,孩子们可以打下坚实的数学基础,为以后更深入的数学学习奠定良好的基础。
小学二年级数学知识点 篇二
小学二年级是孩子们开始接触更多数学知识和技能的阶段。在这个阶段,他们不仅需要学习和掌握基本的数学概念,还需要开始解决更复杂的数学问题。以下是小学二年级数学的几个重要知识点。
1. 乘法和除法运算:在二年级,孩子们开始学习乘法和除法的基本运算。他们需要通过实际操作和绘画等方式来理解和解决简单的乘法和除法问题。在学习乘法时,孩子们需要通过数的重复来计算得出结果。而在除法中,他们需要通过数的分割和分组来计算得出结果。
2. 分数的认识和运算:在二年级,孩子们开始学习分数的概念和运算。他们需要理解分数是由分子和分母组成的,分子表示分数的份数,分母表示整体的份数。孩子们需要通过实际操作和绘画等方式来理解和解决简单的分数运算问题。
3. 长度和面积的认识:在二年级,孩子们开始学习长度和面积的概念。他们需要学会使用标准单位来测量长度和面积,并能够根据已知条件计算未知的长度和面积。
4. 图形的认识和分类:在二年级,孩子们开始学习图形的概念和分类。他们需要学会识别和描述不同形状的图形,并能够根据图形的特征进行分类和排序。
5. 数据的收集和分析:在二年级,孩子们开始学习数据的搜集和分析。他们需要学会使用表格和图表等方式来搜集和展示数据,并能够根据已有数据进行简单的分析和推理。
通过系统地学习和掌握这些知识点,孩子们可以进一步提高他们的数学能力和解决问题的能力。同时,这些知识点也为他们今后更高级的数学学习打下了坚实的基础。
小学二年级数学知识点 篇三
第一单元长度单位
1、常用的长度单位:米、厘米。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。
4、米和厘米的关系:1米=100厘米100厘米=1米
5、线段
⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。
⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。
⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。
6、填上合适的长度单位。
小明身高1(米)30(厘米)
练习本宽13(厘米)
铅笔长17(厘米)
黑板长2(米)图钉长1(厘米)
一张床长2(米)一口井深3(米)
学校进行100(米)赛跑
教学楼高25(米)宝宝身高80(厘米)
跳绳长2(米)一棵树高3(米)
一把钥匙长5(厘米)
一个文具盒长24(厘米)
讲台高90(厘米)
门高2(米)教室长12(米)
筷子长20(厘米)
一棵小树苗高1(米)
小朋友的头围48厘米
爸爸的身高1米75厘米或175厘米
小朋友的身高120厘米或1米20厘米
第二单元100以内的加法和减法
一、两位数加两位数
1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。
2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。
3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。
4、和=加数+加数
一个加数=和-另一个加数
二、两位数减两位数
1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
4、差=被减数-减数
被减数=减数+差
减数=被减数+差
三、连加、连减和加减混合
1、连加、连减
连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。
①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。
②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。
2、加减混合
加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。
3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。
四、解决问题(应用题)
1、步骤:①先读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。
2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
4、关于提问题的题目,可以这样提问:
①…….和……一共…….?
②……比……..多多少/几……?
③……比……..少多少/几……?
第三单元元角的初步认识
1、角的初步认识
(1)角是由一个顶点和两条边组成的;
(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。
(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。
2、直角的初步认识
(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。
(2)画直角的方法:①先画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。
(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。
(4)所有的直角都一样大
(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。
小学二年级数学知识点 篇四
数学广角
1、简单的排列和组合
(1)培养数学学习的兴趣和利用数学方法解决问题的意识。
(2)让学生经历摆学具、画图示、列图表等过程,逐步抽象出全面的、有序的排列和组合的方法,使学生的思维逐步由具体过渡到抽象。
(3)能找出最简单的事物的排列数和组合数,在活动中培养合作交流的意识和有序思考问题的能力。
2、简单的推理
(1)经历对生活中的某些现象进行判断、推理的过程。
(2)能借助"做标记"、"列图表"等方式整理信息,并能对生活中的某些现象按一定方法进行推理。
(3)能有条理的表达自己思考的过程,与同伴进行合作与交。
二年级的学生在经过一年的数学学习后,基本知识技能有了很大的提高,对数学学习也有了一定的了解。但由于一年级学习方法和学习习惯加上个人思维成长的因素,使得优等生思维活跃,发言积极;中等生课堂上几乎是“默默无闻”;后进生学习方法不得当,对每个基础知识掌握的速度总是慢许多,差距逐渐拉开。但二年级能找到适合自己的学习方法,在学习成绩和知识点掌握方面均有可能赶上优等生之列。
表内乘法
1、乘法的初步认识
(1)结合数一数、摆一摆的具体活动,经历相同加数连加算式的抽象过程,感受这种运算与日常生活的联系,体会学习乘法的必要性。
(2)结合具体情境,经历把相同加数的连加算式抽象为乘法算式的过程,初步体会乘法运算的意义,体会乘法和加法之间的联系与区别。
(3)会把相同加数的连加算式改写为乘法算式,知道写法、读法,并能应用加法计算简单的乘法算式的结果。
2、乘法的初步认识
(1)能根据加法算式列出乘法算式,知道乘法算式中各部分的名称及含义。
(2)知道用乘法算式表示"相同加数连加算式"比较简便,为进一步学习乘法奠定基础。
(3)能从生活情境中发现并提出可以用乘法解决的问题,初步学会解决简单的乘法问题。
3、5的乘法口诀
(1)结合具体情境,进一步体会乘法的意义,并经历5的乘法算式的计算过程和5的乘法口诀的编制过程。
(2)能用5的乘法口诀进行乘法计算,体验运用乘法口诀的优越性。
(3)能用5的乘法运算解决生活中简单的实际问题。
4、2、3、4的乘法口诀
(1)结合具体情境,经历2、3、4的乘法口诀的编制过程,进一步体会编制乘法口诀的方法。
(2)能够发现每一组乘法口诀的排列规律,培养有条理的思考问题的习惯,逐步的发展数感。
(3)掌握2、3、4的乘法口诀,会用已经学过的口诀进行乘法计算,并能解决简单的实际问题。
5、56页例5
(1)结合具体情境,掌握乘加、乘减算式的运算顺序,并能正确计算。
(2)能用含有两级运算的算式解决简单的实际问题,培养应用数学的意识和能力。
(3)培养学生从不同的角度观察思考问题的习惯,体现解决问题策略的多样化。
(4)在做一做2题中,应适当拓展,引导学生发现相邻两句口诀之间的关系,帮助学生理解和记忆乘法口诀。
6、6的乘法口诀
(1)经历独立探索、编制6的乘法口诀的过程,体验从已有的知识出发探索新知识的思想和方法。
(2)掌握6的乘法口诀,并能用它解决一些简单的实际问题。
角的初步认识
1、
(1)结合生活情境,认识到生活中处处有角,体会数学与生活的联系。
(2)通过"找一找"、"说一说"、"折一折"、"画一画"等活动,初步认识角,并且能够辨认。
(3)知道一个角各部分的名称,会正确画角。
2、
(1)结合具体情境,直观认识直角,会画直角标记。
(2)能利用工具判断一个角是不是直角,会利用工具画直角。
(3)知道:一个角的大小与边的长短无关。
100以内的加法和减法
1、不进位加法
1)在具体情境中,进一步体会加法的意义。
2)探索并掌握两位数加两位数不进位)的计算方法。
3)让学生感受加法计算和日常生活的联系,进一步提高解决问题的能力。
2、进位加法
1)在具体情境中,进一步体会加法的意义。
2)探索并掌握两位数加两位数进位加的计算方法,能正确进行计算。
3)能用两位数的加法解决简单的实际问题,进一步提高解决问题的能力。
3、不退位减法
1)在具体情境中,进一步体会减法的意义。
2)探索并掌握两位数减两位数不退位)的计算方法。
3)进一步培养提出问题、解决问题的意识和能力。
4、退位减法
1)在具体情境中,进一步体会减法的意义。
2)探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。
3)能用两位数的减法解决简单的实际问题,进一步提高解决问题的能力。
5、"多几"、"少几"的应用
1)在具体情境中,理解"比某数多几或少几"的实际问题。
2)可以利用学具的操作,让学生搞清楚是与哪个数量进行比较,然后发生了什么变化,最后再用算式记录下来。
3)能正确列式解决相应的实际问题。
4)渗透统计的思想和方法。
6、连加、连减
1)探索并掌握100以内连加和连减的计算方法,进一步体验算法多样化。
2)能用100以内的连加和连减运算解决生活中的实际问题,并体验解决问题策略的多样性。
长度单位
长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。
其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。
米:国际单位制中长度的标准单位是“米”,用符号“m”表示。
分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
厘米:长度单位,简写符号为:cm。
毫米:英文缩写为mm
(1厘米=10毫米=0
.1分米=0.01米=0.00001千米)
小学二年级数学知识点 篇五
一、有余数的除法
1、有余数除法的意义、算式的写法及读法。
有余数除法的意义:不能平均分。
有余数除法的写法、读法:
例:写法:9÷4=2……1(知道各部分的名称,9是被除数、4是除数、2是商、1是余数。)
读法:9除以4商2余1.
例:①19÷9=2……1读作:( )
19是( ),9是( ),2是(),1是( )。
②41÷5=8……1读作:( )
其中,被除数是( ),除数是( ),商是( ),余数是( )。
③被除数是73,除数是8,商是(),余数是()。
2、余数与除数的关系
(1)被除数=除数×商+余数
(2)余数一定小于除数。
例:①除数是4,商是8 ,余数是3,则被除数是( )。
②一道除数是6的有余数除法,余数可能是( )。
3、有余数除法竖式的写法。(一商二乘三减四比较)
例:列竖式计算。
①21÷5= ②19÷6= ③48÷9=
4、解决问题
例:①17根小棒,每3根一份,分成( )份,还剩( )根。算式为( )。
②搭一顶帐篷需要9米布,43米布最多可以搭多少顶帐篷?
③野营小队共17人,每顶帐篷住3人,需要搭多少顶帐篷?
④有58个茶杯,每7个装1盒,可以装几盒?还剩几个?
二、万以内数的认识
1、“千”的认识。(10个一百是一千,一千里面有10个一百)
例:①( )个10是100;()个100是1000。
②1000里面有( )个100,( )个10,( )个1。.
③比299大1的数是()。
2、千以内数的读法、写法、组成。
800读作:( ),组成( )。
808读作:( ),组成( )。
880读作:( ),组成( )。
3、“万”的认识。(10个一千是一万,一万里面有10个一千)
4、万以内数的读法、写法、组成。
读数时,从高位读起,千位是几就读几千,百位是几就读几百,十位是几就读几十,个位是几就读几;中间有一个或两个0都读一个零,末尾的0不读。
例:①在2371中,2在( )位上,表示( ),3在( )位上,表示( ),7在( )位上,表示( ),1在()位上,表示( )。
②4050读作( ),组成( )。
③6009读作( ),组成( )。
④二千零六写作( );五千八百七十六写作( )。
⑤一个数千位上是6,十位上分别是8,其余各位上都是0,这个数是( )。
⑥6060中的两个0分别表示( )、( ),两个6分别表示( )( )。
⑦一个数最高位是千位,它是( )位数;一个三位数,最高位是( )位。
⑧用1、2、0、6、8中的4个数,组成的最大四位数是( ),最小四位数是( )。
5、万以内数的大小比较。
(1)数位不同,数位多的数大。
(2)数位相同,从高位比起,高位数字越大则数越大。
6、认识近似数,估计。
895接近900,900就是895的近似数。895≈900
806接近800,800就是806的近似数。806≈800
例:798≈ 2958≈
1178≈ 20xx≈
7、整百数加减整百数、几千几百加减几百的口算。
三、万以内数的加减法
1、不连续进位、退位的三位数加、减三位数的计算。
例:用竖式计算。
347+281= 720-340= 727-562= 253+364=
2、加减法的验算。
例:笔算并验算。
275+384= 724-562= 827-456=
3、连续进位、退位的三位数加、减三位数的计算。
例:竖式计算。
475-289= 596+87=
例:竖式计算(被减数中间有零)。
603-375= 305-227=
例:竖式计算并验算(整百数减三位数)。
800-425= 900-592=
4、估算
485-289≈200,因为485≈500,289≈300,500-300=200,所以485-289≈200。
例:208+191≈ 800-205≈
385+421≈ 614-398≈
5、三位数加减解决比多、比少的问题
例:①500比436大多少?
②被减数是301,减数是138,差是多少?
③297比402小多少?
④一个数是562,它比另一个数少281,求另一个数。
⑤750比一个数多205,这个数是多少?
四、千米、分米、毫米的认识
1、知道长度单位间的关系。
尺子上的1小格的长度时1毫米,毫米用mm表示。
10厘米就是1分米,分米用dm表示。
1千米就是1000米,千米又叫公里,用km表示。
1米=100厘米
1厘米=10毫米
1分米=10厘米
1千米=1000米
毫米、厘米、分米、米、千米(公里)都是计量物体长度的单位,叫做长度单位。
2、单位间的简单换算和计算。
例:3分米=( )厘米
7000米=( )千米
2米=( )分米
90毫米=( )厘米
4厘米=( )毫米
5千米=( )米
例:2分米-9厘米=()厘米
24毫米-14毫米=( )毫米=( )厘米
8900米=( )千米( )米
3千米4米=( )
例:一分硬币的厚度约1( )。
火车每小时约行驶120( )。
小强的身高约为140( )。
球场长约80( )。
例:填“<”“>”或“”
40毫米○4分米 112厘米○20分米
100毫米○1分米 8米○800厘米+20厘米
五、图形与拼组
1、图形的认识(长方形、正方形、三角形、圆形、平行四边形、五边形、六边形、多边形……)
长方形、正方形的特征:
长方形的对边(相等),四个角都是(直角)。通常把长方形长边的长度叫做(长方形的长),短边的长度叫做(长方形的宽)。
正方形的四条边都(相等),四个角都是(直角)。把正方形每条边的长度叫做(边长)。
2、拼组图形(能准确数出拼组图形中各种图形的个数)
六、时、分、秒的认识
1、认识钟面,知道时、分、秒之间的关系。
钟面上有12个小格,60个小格。
分针走一小格是1分钟,时针走一大格是1小时。
分针走60个小格,时针正好走一大格,所以,1时=60分。
秒针走1小格是1秒。
分针走1小格,秒针走了60个小格,正好是1圈。所以,1分=60秒。
例:3小时=()分钟
5分钟=( )秒
2小时25分钟=()分钟
60分钟=( )小时
120秒=( )分钟
1分钟30秒=()秒
例:在○里填上“<”“>”或“=”。
100秒○1分钟
2小时○120分钟
4分钟○40秒
100秒○2分钟
3分钟45秒○3分钟
1分钟○60秒
2、会读写钟面上的时刻。
读时刻:判断时针、分针。
时针走过几就是几时,分针走了多少个小格就是多少分。
例:8时31分(时针过了8是,分针走了31个小格,就是8时31分)。
8时31分也可以写成8:31。
3、简单的时间计算。
例1:7时30分到10时30分,经过()小时。
时针从7走到11,经过了( )小时。
分针从2走到6,共走了( )分钟。
例2:一列火车早上6时出发,上午9时30分到达终点,这列火车行驶了多长时间?
例3:足球比赛分上、下两场,上半场45分钟,下半场跟上半场时间一样,中间休息15分钟,全场比赛需要多长时间?
例4:小丽晚上刷牙3分钟,洗脸4分钟,洗澡25分钟,小丽做完这些事需要多长时间?
七、混合运算
1、加、减、乘、除、小括号运算顺序。(先小括号,后乘除,最后加减)
2、万以内数的加减混合运算(不带括号)
300-217+503
720-325-279
3、万以内数的加减混合运算(带括号)
脱式计算
720-(325-279)
679+(567-389)
4、加、减、乘、除、小括号混合运算
8×8+9=
100-63÷9=
520-(200+320)=
55-5×6=
6×9-35=
72÷8×9=
小学二年级数学知识点 篇六
1、乘法的含义
乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的写法和读法
⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。
如:4+4+4=12改写成乘法算式是4×3=12或3×4=12
4×3=12或3×4=12
⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。
3、乘法算式中各部分的名称及实际表示的意义
在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。
4、乘法算式所表示的意义
求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。
5、加法写成乘法时,加法的和与乘法的积相同。
6、乘法算式中,两个乘数交换位置,积不变。
7、算式各部分名称及计算公式。乘法:乘数×乘数=积
加法:加数+加数=和
和—加数=加数
减法:被减数—减数=差
被减数=差+减数
减数=被减数—差
8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。
如:1×9=10—19×5=50—5
9、看图,写乘加、乘减算式时:
乘加:先把相同的部分用乘法表示,再加上不相同的部分。
乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。
计算时,先算乘,再算加减。
如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14
10、“几和几相加”与“几个几相加”有区别
求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)
求几个几相加,用几乘几。
如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8
2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64
11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。
“5+5+5”写成乘法算式是(3×5=15)或(5×3=15),
都可以用口诀(三五十五)来计算,表示(3)个(5)相加
3×5=15读作:3乘5等于15.5×3=15读作:5乘3等于15
等式性质
性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立。
若a=b,那么a+c=b+c
性质2:等式两边同时乘或除以同一个不为0的整式,等式仍然成立。
若a=b,那么有a·c=b·c或a÷c=b÷c(c≠0)
性质3:等式具有传递性。
若a1=a2,a2=a3,a3=a4那么a1=a2=a3=a4
质数相关定理
1.在一个大于1的数a和它2倍之间,即区间(a,2a)中必存在至少一个素数。
2.存在任意长度的素数等差数列。(格林和陶哲轩,20xx年)
3.一个偶数可以写成两个数字之和,其中每一个数字都最多只有9个质因数。(挪威布朗,1920年)
4.一个偶数必定可以写成一个质数加上一个合成数,其中的因子个数有上界。(瑞尼,1948年)
5.一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(中国,1968年)
6.一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为(1+2)(中国陈景润)