《三角形面积》说课稿(优选6篇)
《三角形面积》说课稿 篇一
在数学的初中阶段,学生已经学习过了平面图形的性质和计算面积的方法。而三角形是最简单的平面图形之一,也是学生最熟悉的图形之一。本节课的主要内容是教授三角形面积的计算方法。
首先,我会通过引导学生观察和思考,让他们发现三角形的特性。我会给学生展示一些不同形状和大小的三角形,并引导他们发现三角形有三个顶点、三条边和三个内角。我会鼓励学生讨论三角形的性质,包括内角之和为180度等。
接下来,我会介绍三角形面积的计算方法。我会先引导学生思考如果计算矩形的面积,然后将这个思路扩展到三角形。通过让学生观察和思考,他们会发现将三角形划分为矩形或直角梯形可以更方便地计算面积。我会给学生提供一些示例,让他们练习使用这种方法计算三角形的面积。
在学生理解了计算三角形面积的方法后,我会引导他们运用这些知识解决一些实际问题。我会给学生提供一些有关三角形面积的实际问题,例如计算房间地板的面积、计算庭院的面积等。通过解决这些问题,学生可以将所学的知识应用到实际生活中,并加深对三角形面积的理解。
最后,我会引导学生总结本节课的内容,并进行小结。我会让学生回顾所学的知识和方法,并帮助他们总结计算三角形面积的步骤和要点。通过这样的总结,学生可以进一步巩固所学的知识,并提高他们的学习效果。
通过本节课的教学,学生可以了解到三角形的特性和性质,并学会了计算三角形的面积。同时,通过解决实际问题的训练,学生可以将所学的知识应用到实际生活中。这样的教学设计可以帮助学生提高对三角形面积的理解和运用能力,同时也培养了他们的观察和思考能力。
《三角形面积》说课稿 篇二
在数学的初中阶段,学生已经学习过了平面图形的性质和计算面积的方法。而三角形是最简单的平面图形之一,也是学生最熟悉的图形之一。本节课的主要内容是教授三角形面积的计算方法。
首先,我会通过引导学生观察和思考,让他们发现三角形的特性。我会给学生展示一些不同形状和大小的三角形,并引导他们发现三角形有三个顶点、三条边和三个内角。我会鼓励学生讨论三角形的性质,包括内角之和为180度等。
接下来,我会介绍三角形面积的计算方法。我会先引导学生思考如果计算矩形的面积,然后将这个思路扩展到三角形。通过让学生观察和思考,他们会发现将三角形划分为矩形或直角梯形可以更方便地计算面积。我会给学生提供一些示例,让他们练习使用这种方法计算三角形的面积。
在学生理解了计算三角形面积的方法后,我会引导他们运用这些知识解决一些实际问题。我会给学生提供一些有关三角形面积的实际问题,例如计算房间地板的面积、计算庭院的面积等。通过解决这些问题,学生可以将所学的知识应用到实际生活中,并加深对三角形面积的理解。
最后,我会引导学生总结本节课的内容,并进行小结。我会让学生回顾所学的知识和方法,并帮助他们总结计算三角形面积的步骤和要点。通过这样的总结,学生可以进一步巩固所学的知识,并提高他们的学习效果。
通过本节课的教学,学生可以了解到三角形的特性和性质,并学会了计算三角形的面积。同时,通过解决实际问题的训练,学生可以将所学的知识应用到实际生活中。这样的教学设计可以帮助学生提高对三角形面积的理解和运用能力,同时也培养了他们的观察和思考能力。
《三角形面积》说课稿 篇三
一、说教材:
本课题是人教版五年级上册第五单元一课时的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。教学内容引导学生动手把两个完全一样的三角形拼成平行四边形来计算面积,培养学生的动手操作能力和思维能力。
二、说教学目标:
基于以上对教材的认识,按照新课程理念,我制定了以下的教学目标:
1、知识与技能
(1)使学生经历三角形面积计算公式的探索过程,理解三角形面积计算的公式。(说明:这里强调“过程”,即:让学生亲身经历三角形面积公式探索与获得的过程,而不是要教师直接把三角形面积计算的方法讲明给学生,让学生处于接受的状态。这样设计,符合了新课程学生的现代学习观。)
(2)通过多种学习活动,培养学生的抽象、概括和推理能力,培养学生的合作意识和探索精神。
(3)培养学生应用所学知识解决问题的能力。
2、过程与方法
使学生经历操作、观察、讨论、归纳等数学学习活动,通过图形的拼摆,渗透图形转化的数学思想,在探索学习和解决实际问题的过程中体验数学与生活的联系。
3、情感、态度与价值观
让学生在探索活动中获得积极、愉悦的情感体验,进一步培养学生学习数学的兴趣。
三、说教学重点、难点:
重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形的底、高和面积与拼合而成的平行四边形的底、高和面积之间的关系。
四、说教法学法:
“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:
1、实验法
学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。
2、课件演示,配合启发。
学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。
五、说教学过程:
(一)复习引入,揭示课题
1、请学生回忆并指名学生说明上节课同学们推导平行四边形面积计算的过程。(设计意图:要求学生完整地说明平行四边形面积公式的推导过程,锻炼学生的语言表达能力。并继续渗透转化的数学思想,即:把平行四边形转化成长方形来计算面积,为新知识的学习作好铺垫。对于表达不清楚、不完整的同学,教师显示课件,启发其完整的表达,并给予鼓励。)
2、揭示课题
板书课题:三角形的面积
(二)探索新知
出示问题:怎样把三角形的转化成我们学过的图形呢?
1、小组合作,动手拼摆,填写实验报告单。(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“形状完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)
2、小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。“我的发现”这一栏教师要鼓励学生充分、大胆地发言,说出自己在操作中的发现,教师给予鼓励。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)
3、课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生动手拼摆,再播放课件演示这一顺序必须把握好。先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)
4、小组合做,讨论问题(课件出示问题)。
问题:两个完全一样的三角形可以拼成?
每个三角形的面积等于?
这个平行四边形的底等于?
这个平行四边形的高等于?
三角形的面积公式是?
学生借助手中的图形讨论问题。
小组代表汇报讨论学习成果。
教师结合课件补充,帮助学生解决问题。(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)
(三)巩固拓展
1、课件出示两道基本题的练习。
学生独立计算,教师指名学生上黑板板演。
课件演示规范的板演过程。(设计意图:基本题的设计,巩固了学生对基本知识的掌握。)
2、课件出示两道拓展题的练习。(判断题,可以组织学生小组讨论完成。“解决问题”有一定的开放性,学生可以自由选择三角板,实际动手量出三角板的底和高,再计算面积,有利于培养学生的动手能力,有利于学生学习主体性的提到。)
(四)全课总结
同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)
六、说板书设计
三角形的面积
三角形的面积=底高÷2
字母表示:s=ah÷2
《三角形面积》说课稿 篇四
在学习本课之前,学生已经充分认识了三角形的特征,能熟练地计算长方形、正方形面积,并且在本单元探索活动中,学生经历了推导平行四边形的面积公式,在实际操作的过程中已经感受到了知识之间的相互联系与互相转化的思想。所以,我们在设计这节课的时候,将教会学生预习,让学生在猜想、观察、操作中自主归纳公式运用公式作为本课的侧重点。
教学目标是:
1、在实际情境中,认识计算三角形面积的必要性。
2、在自主探索中,经历推导三角形面积计算公式的过程。
3、能运用三角形的面积公式,计算相关图形的面积,解决实际问题。
教学重难点:在自主探索中,经历推导三角形面积计算公式的过程,并能解决实际问题。
教学教学准备
教学环节:
一、课前预习,初步感知。
在这个环节中,教师的行为是根据具体的教学内容指导学生进行预习。这里我们要说明的是,预习并不是放任自流,我们在研究的过程中总结了指导预习的9种方法。他们分别是:读、找、做、想、记、举、试、问、联。
所以在这节课的课前预习中,我们就指导学生先读一读教材,了解这节课我们要学习的内容是什么。然后让学生在书中的标题旁或者小刺猬的图例旁找一找这节课的知识点是什么。再引导学生根据书中的要求自己动手做一做。在实际操作之后让学生想一想为什么要这么做?还可以怎么做?然后让学生讲一讲自己操作的过程。还要教会学生问一问,问问自己还有什么不明白的或者容易错的问题。
在这个基础上,教师引领学生做七巧板拼图游戏,让学生在游戏中感受图形之间的联系。在这个环节中,重要的是要教会学生预习的方法,所以教师要跟踪检查布置的每一项任务。
二、进入情景,发现问题。
在这个环节中,教师要为学生创设情境,学生在此情境中发现问题、提出问题,感受学习本课的必要性。这个环节的关键是要引起学生的认知冲突,激发学生的求知欲。
因此在这个环节中,我们为学生设置了学校开运动会制作宣传小旗的情境。引导学生看情境图,分析要求出至少需要多少布料的关键就是要求出这个三角形的面积,教师要及时抓住主要的问题引导学生思考怎么求这个三角形的面积,在学生的讨论中,引起学生的认知冲突,让学生感到学习三角形面积计算的重要性,然后及时切入新课。
三、尝试解决,交流总结。
在这个环节中,学生要在预习的基础上与小组成员合作解决问题。通过各种不同的方法验证三角形的面积公式。教师的行为就是在学生的自主探索中适当的指导,并在学生的汇报中引导学生总结规律,强化重点。
因为学生在课前有了平行四边形面积计算的经验,又做了充分的预习,所以在这个环节中我们将重点放在学生独立尝试解决问题上。我设计的问题是:你要怎么解决这个问题。因为学生在课前已经做了预习,并且在平行四边形面积的时候已经感受到了数小格的局限性,所以在这个问题的回答上,学生很有可能直接就说出了三角形的面积公式。其实学生在没有教师讲授的时候就了解三角形的面积公式不足以为奇,关键是教师要继续追问下去为什么是底高2,这才是我们这节课要解决的重点问题,所以我们在学生预习的基础上调整了教学的顺序,变以往的教师在课堂上设计大量的环节牵引学生一步一步的推导到让学生在了解公式的前提下,自己动手操作验证结论。其实都是在教师的指导下对公式的形成进行了再一次的推导,不过在教学的顺序上发生了微小的变化,教学的要求由教师的教变成了学生自主验证,让学生充分感觉自己是课堂的主人,这样做更激会发学生的求知欲。在全班交流的过程中,学生会用两个完全相同的三角形拼成一个平行四边形,将三角形转化成我们已经学习的平行四边形进行计算,这个时候教师的作用就是要引导学生观察一个三角形与拼成的平行四边形之间的关系,强化本节课的几个重难点,引导学生发现新旧知识之间的联系,总结公式。
四、分层达标,巩固练习
在第三个环节中,我们重视的是学生自主的探索,鼓励每个学生在实践操作中展示自己的预习成果,学生可能会出现各种不同的问题,但是为了尊重学生,教师只在学习的过程中起到帮助和个别引导的作用,教师不牵引,不主导,所以,在第三个环节中会比以往教师引导学生一步一步总结的时间花费的多。因此在第四个环节巩固练习,分层达标中,我们就要用短暂的时间,根据不同层次学生的实际水平,运用多种情景的变式,通过设计饶有兴趣的练习,或新颖耐人寻味的总结,使学生牢固掌握知识。
五、自我评价,总结提高
在这个环节中,我们鼓励学生说说本节课你有什么收获,其实也是培养学生独立总结的能力。
在这节课的设计中,我们注重了学生的认知规律,激发了学生的求知欲望,注意了学生的个性张扬,让学生独立思考,合作学习,创新精
《三角形面积》说课稿 篇五
说学习内容
三角形的面积是人教版小学数学第九册84至86页的内容。这个内容是在第八册认识了三角形,学会计算长方形的面积以及刚学习了平行四边形面积的基础上进行教学的,同时,与平行四边形、梯形的面积联系在一起,为以后学习圆面积和复合图形的面积计算起到铺垫作用。运用拼摆、旋转、平移的方法把两个完全一样的直角、锐角和钝角三角形分别变换成长方形或平行四边形,得出三角形的面积等于长方形或平行四边形面积的一半,然后归纳出三角形面积计算公式。
说学习目标:
1、理解三角形面积公式的推导过。
2、正确运用三角形面积计算公式进行计算。
3、应用公式解决简单的实际问题。
学习重点:理解三角形的面积计算公式,正确计算三角形的面积。
学习难点:理解三角形的面积公式的推导过程。
根据以上的教学目标、教学重、难点,我准备采用以下教学方法进行教学:
1、发展迁移原则。运用迁移规律,引导学生在整理旧知的基础上学习新知。
2、加强学生动手操作。在学生拼摆实验的基础上,通过课件演示,采取旋转、平移的方法,将两个完全一样的三角形拼成平行四边形,加深学生对三角形面积公式来源的体验和理解。
学习方法上我侧重以下几点:
1、学会以旧引新,掌握运用知识迁移、学法迁移进行学习的方法。
2、操作实验法。学生自己动手用两个完全相同的三角形拼摆出自己学过的图形,弄清三角形面积与平行四边形面积的关系。
3、学习讨论法。在操作实验的基础上,讨论三角形的底和高与拼成的平行四边形的底和高的关系,从而总结出三角形面积的计算公式。
针对上述内容的需要,我设计了如下的教学程序:
说学习过程
一
、激趣定标
(一)激趣导入
1、出示平行四边形
(1)平行四边形的面积公式。(板书:平行四边形面积=底×高)
(2) 一个平行四边形底是2厘米,高是1.5厘米,求它的面积。
2、既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
(二)学习目标
1、理解三角形面积公式的推导过。
2、正确运用三角形面积计算公式进行计算。
3、应用公式解决简单的实际问题。
说自学互动(适时点拨 )
(一)推导三角形面积计算公式、
1、用两个完全一样的直角三角形拼、
(1)教师参与学生拼摆,个别加以指导
(2)学生演示拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?
2、用两个完全一样的锐角三角形拼、
(1)组织学生利用手里的学具试拼、(指名演示)
(2)学生演示拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
3、用两个完全一样的钝角三角形来拼、
(1)由学生独立完成、
(2)学生演示拼摆图形
4、巧问质疑
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
5、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(三)正确运用三角形面积计算公式进行计算
1、教学例2
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
(1)由学生独立解答、
(2)订正答案(教师板书)
(四)应用公式解决简单的实际问题。
通过学生利用三角形的面积计算公式解决简单的实际问题,提高学生对三角形的面积计算公式的理解和解决简单的生活实际问题。
三、测评训练
通过测评训练,测评学生所学的新知识是否掌握,提高学生的计算能力和计算速度。
四、小结
同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。运用拼摆、旋转、平移的方法把两个完全一样的直角、锐角和钝角三角形分别变换成长方形或平行四边形,得出三角形的面积等于长方形或平行四边形面积的一半,然后归纳出三角形面积计算公式。
五、板书设计、
这样板书设计使学生一目了然,工整、简单、明白。
《三角形面积》说课稿 篇六
一、 说教材:
1、说课内容:
我说课的内容是人教版数学五年级上册第五单元《三角形的面积》。
2、教材的地位及作用:
三角形的面积计算是图形的面积(一)探索活动的第二课时,它是在学生掌握了长方形、正方形及平行四边形面积计算方法的基础上进行的。通过对这部分内容的教学,使学生理解并掌握三角形面积的计算方法,并解决实际生活中与三角形面积计算相关的实际问题;同时加深学生对三角形与长方形、平行四边形之间内在联系的认识,也为学生进一步探索并掌握其他平面图形的面积计算方法打下基础。
同时,三角形的面积推导过程蕴含着转化和迁移的数学思想,本课的学习,重在让学生经历学习的过程,在获得知识的同时,渗透初步的数学思想与方法,并培养科学的探究精神,进一步提高学生运用所学知识、技能解决一些实际问题的能力。本课内容编排的最大特点是加强了动手操作,让学生在动手实践中发现各种图形的内在联系,体会三角形面积计算的一般策略。让学生经历发现问题——探索问题——解决问题的过程,培养推理能力。这样的编排使学生理解三角形面积公式的来龙去脉,锻炼数学推理能力,从而感受数学方法的内在魅力。
3、教学目标:
(1)知识与能力目标:让学生通过平移、旋转等方法,探索并掌握三角形的面积计算公式,能正确运用面积公式进行三角形面积计算,加深学生对三角形与平行四边形面积公式之间内在联系的认识。
(2)过程与方法目标:使学生经历小组合作、动手操作、交流讨论、分析归纳等数学活动过程,体会转化的数学思想,发展空间观念和初步的推理能力。
(3)情感态度与价值观目标:培养学生的团结协作意识和勇于探索的精神,使学生在学习数学的过程中,体验到成功的乐趣。
4、 教学重难点:
(1)重点:掌握三角形面积的计算公式,能利用公式解决生活中有关三角形面积计算的实际问题。
(2)难点:理解三角形面积计算公式的推导过程,灌输迁移的数学方法和转化的数学思想。
(3)关键:引导学生理解三角形面积计算公式中除以2的意义。
5、教具、学具准备:
教师准备课件,学生以小组为单位准备完全相同的锐角、直角、钝角三角形各两个。
二、说教法与学法。
本节课,我根据五年级学生的知识面较广,学习自觉性较强的特点,采用尝试教学法、实验法、练习法等教学方法进行教学。让学生带着教师提出的问题在旧知识的基础上,通过自学课本,利用学具独立作业,互相讨论和巩固练习,去尝试解决问题,教师再根据学生尝试练习中的难点和教材的重点加以讲解和点拔,充分发挥学生的主体作用和教师的主导作用,有利于培养学生的探索精神和操作能力。教学时,我按导入新课、揭示课题、推导公式、实际应用、巩固练习、课堂总结这六个环节进行。
三、说教学过程。
1、旧知引入,激发思考:
在这一环节中,我先让学生回忆了长方形、正方形、平行四边形的面积计算公式。再出示一条三角形红领巾,提问你们会计算三角形的面积吗?(学生大部分会说出三角形的面积=底×高÷2),这时老师反问:为什么底×高÷2就能得到三角形的面积呢?那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)
2、回忆旧知,引导迁移:
回忆平行四边形的面积计算公式推导过程,提问:我们能不能像推导平行四边形面积公式一样,将三角形转化成我们以前学过的图形呢?(这一部分的设计在联系旧知的基础上学习新知,将平行四边形面积的推导方法迁移到三角形面积计算公式的推导,向学生灌输迁移的数学方法和转化的数学思想,为三角形面积计算公式的推导作好辅垫。)
3、小组合作,动手操作:
(1)以小组为单位,利用学具进行动手操作。看看三角形能转化成以前学过的什么图形?
(2)小组汇报:学生汇报的结果可能有长方形、正方形、平行四边形或一个更大的三角形,这时,教师作引导:三角形的面积暂时还不会计算,拼成长方形或正方形也是比较特殊的情况,而两个完全相同的直角三角形、锐角三角形和钝角三角形都可以拼成一个平行四边形,从而将三角形面积的计算公式的推导引导到平行四边形上来。(把学生拼出的图形一一摆在黑板上)
4、学生汇报,归纳总结:首先,小组交流讨论:拼成的平行四边形的底与原来三角形的底有什么关系?拼成的平行四边形的高与原来三角形的高有什么关系?其中一个三角形的面积与拼成的平行四边形的面积有什么关系?然后每个小组派代表发言,说说平行四边形与三角形的关系:拼成的平行四边形的底与原来三角形的底相等,高与原来的三角形的高相等,其中一个三角形的面积是拼成的平行四边形面积的一半。
师生一起归纳总结推导过程,得出各种推导的结论,结论一:两个完全相同的三角形可以拼成一个平行四边形,这个平行四边形的底就是原来三角形的底,高就是原来三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,三角形的面积=底×高÷2。结论二:在高的一半的地方剪开,上半部分旋转一下,变成一个平行四边形,平行四边形的底就是三角形的底,它的高是三角形的高的一半,平行四边形的面积就是三角形的面积,三角形的面积=平行四边形的面积=底×高的一半,所以三角形的面积S=ah÷2。
例题的教学,是本课的重点。书上的例题,我着重让学生通过分组探究的方式去学习,在交流中把应掌握的知识有层次地一一呈现。这些知识是本节课的关键。估计到学生在操作的时候,有可能会出现只用一个三角形拼平行四边形的方法,这种方法与例题方法以及与“你知道吗?”的对比,可以从多角度来强化“÷2”的理由,我觉得花一些时间还是有必要的。而且这样的做法,也是基于学生的学习实际和对传统的数学文化了解。
5、简单应用,突出重点:
(1)验证结论:用公式计算法求出第一个环节中的三角形红领巾的面积。
(2)巩固练习:数学来源于生活,并应用于生活。
在学习了三角形面积计算公式后,我设计了一组练习,
(1)口算(熟练三角形面积计算公式)。
(2)判断(理解意义,突破难点)。
(3)选择(理解三角形的面积与平行四边形面积的关系)。
(4)应用(解决生活中的实际问题)。
练习的设计主要分这几个环节:
第一个环节的练习,主要是让学生能正确地应用三角形面积公式计算各个三角形的面积。在应用的过程中,规范学生的书写,培养良好的作业习惯。
第二个环节重点是放在“÷2”和“×2”的区别上。主要是因为从以往学生练习来看,这是错误中的主流,一定要引起学生的重视。
第三个环节是开发性的练习,数据具有更多的可能性,主要还是激发学生的探索欲望。通过这个开放练习,使学生又一次地认识到三角形与对应的平行四边形面积之间的联系。
6、课堂总结:这节课你有什么收获?让学生说说自己在这一节课中在知识方面及小组合作过程中的收获,教师对学生进行激励性评价。
四、说板书设计:
三角形的面积
三角形的面积 = 平行四边形的面积÷2
三角形的面积 = 底×高÷2
S=ah÷2
例1 S=ah÷2
=100×33÷2
=1650 (平方厘米)