《圆周角和圆心角的关系》说课稿(优质3篇)
《圆周角和圆心角的关系》说课稿 篇一
第一篇内容
一、教学目标
1. 知识目标:了解圆周角和圆心角的概念及其关系,掌握计算圆周角和圆心角的方法。
2. 能力目标:能够运用圆周角和圆心角的关系解决与圆相关的问题。
3. 情感目标:培养学生对几何知识的兴趣,提高解决问题的能力和思维能力。
二、教学重难点
1. 教学重点:圆周角和圆心角的定义及其关系。
2. 教学难点:如何灵活运用圆周角和圆心角的关系解决与圆相关的问题。
三、教学过程
1. 导入活动:通过展示一张图片,引导学生观察并思考,激发学生对圆的认识和兴趣。
2. 概念讲解:以板书的形式呈现圆周角和圆心角的定义,并通过实例进行解释和说明。
3. 理论总结:让学生通过观察和总结,发现圆周角和圆心角之间的关系,并进行归纳总结。
4. 计算练习:通过多个实例,让学生掌握计算圆周角和圆心角的方法。
5. 拓展应用:设计一些实际问题,让学生运用所学知识解决与圆相关的问题。
6. 归纳总结:对本节课的内容进行归纳总结,提醒学生掌握重点和难点。
四、教学手段
1. 多媒体展示:通过图片和动画等多媒体手段引导学生观察、思考和理解圆周角和圆心角的关系。
2. 板书呈现:将圆周角和圆心角的定义和计算方法以简明的形式呈现在黑板上,方便学生理解和记忆。
3. 计算练习:设计一些简单到复杂的计算题目,让学生通过练习巩固所学知识。
五、教学评价
通过观察学生的课堂表现、练习成绩和解决问题的能力,评价学生是否达到了预期的教学目标。
六、教学反思
本节课通过多媒体展示、概念讲解和实例分析等方式,引导学生理解和掌握圆周角和圆心角的关系。但在教学过程中,发现有些学生对计算圆周角和圆心角的方法掌握不够熟练,需要加强练习和巩固。下节课将重点加强计算练习和拓展应用,提高学生的应用能力和解决问题的能力。
《圆周角和圆心角的关系》说课稿 篇二
第二篇内容
一、教学目标
1. 知识目标:了解圆周角和圆心角的定义,掌握计算圆周角和圆心角的方法。
2. 能力目标:能够分析问题,运用圆周角和圆心角的关系解决与圆相关的问题。
3. 情感目标:培养学生对几何知识的兴趣,提高解决问题的能力和思维能力。
二、教学重难点
1. 教学重点:掌握圆周角和圆心角的定义及其关系。
2. 教学难点:如何运用圆周角和圆心角的关系解决与圆相关的问题。
三、教学过程
1. 导入活动:通过展示一段视频,引发学生对圆的认识和兴趣,激发学生思考圆周角和圆心角的关系。
2. 概念讲解:以多媒体展示的形式呈现圆周角和圆心角的定义,通过示意图和实例进行解释和说明。
3. 讨论引导:分组讨论,让学生通过观察和分析,发现圆周角和圆心角之间的关系,并进行归纳总结。
4. 计算练习:设计一些问题,让学生通过计算圆周角和圆心角的方法解决问题。
5. 拓展应用:设计一些实际问题,让学生运用所学知识解决与圆相关的问题。
6. 归纳总结:对本节课的内容进行归纳总结,提醒学生掌握重点和难点。
四、教学手段
1. 视频展示:通过精心挑选的视频片段引发学生兴趣,激发学生对圆周角和圆心角的思考。
2. 多媒体展示:通过示意图和实例的展示,帮助学生理解圆周角和圆心角的概念及其关系。
3. 讨论引导:采用分组讨论的形式,激发学生思维,培养学生分析问题和解决问题的能力。
4. 计算练习:设计一些简单到复杂的计算题目,让学生通过练习巩固所学知识。
五、教学评价
通过观察学生的课堂表现、讨论质量和解决问题的能力,评价学生是否达到了预期的教学目标。
六、教学反思
本节课通过视频展示、概念讲解和讨论引导等方式,引发学生兴趣,帮助学生理解和掌握圆周角和圆心角的关系。但在教学过程中,发现有些学生对圆周角和圆心角的概念理解不够深入,需要加强概念讲解和示意图的展示。下节课将注重概念的理解和应用的练习,提高学生的理解能力和应用能力。
《圆周角和圆心角的关系》说课稿 篇三
《圆周角和圆心角的关系》说课稿
作为一位无私奉献的人民教师,往往需要进行说课稿编写工作,说课稿有助于学生理解并掌握系统的知识。那要怎么写好说课稿呢?以下是小编精心整理的《圆周角和圆心角的关系》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
下面我从教材分析、教法学法分析、教学过程分析、设计说明四个方面来谈谈我是如何分析教材和设计教学过程的。
教材分析
教材的地位和作用
本课是在学习了圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是圆这章的重点内容之一。
依学情定目标
我们面对的是已具备一定知识储备和一定认知能力的个性鲜明的学生,他们有较强的自我发展意识,根据新课程标准的学段目标要求,结合学生实际情况制订以下三个方面的教学目标:
1)知识目标:了解圆周角和圆心角的关系,有机渗透“由特殊到一般”思想、“分类”思想、“化归”思想。
2)能力目标:引导学生能主动地通过:实验、观察、猜想、验证“圆周角和圆心角的关系”,培养学生的合情推理能力、实践能力和创新精神,从而提高数学素养。
3)情感目标:创设生活情境激发学生对数学的“好奇心、求知欲”,营造“民主、和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验,培养学生以严谨求实的态度思考数学。
3、教学重点、难点
重点:经历探索“圆周角和圆心角的关系”的过程,了解“圆周角和圆心角的关系”。
难点:认识圆周角定理需分三种情况逐一证明的必要性。
教法、学法分析
数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法和学法是密不可分的。本课采用以探究式教学法为主,发现法、分组交流合作法、启发式教学法等多种方法相结合,以学生的活动为主线,突出重点突破难点,发展学生的数学素养。注重数学与生活的联系,引导学生用数学的眼光思考问题、发现规律、验证猜想;注重学生的个性差异,因材施教,分层教学;为了转变以往学生只是认真听讲、机械记忆、练习巩固的被动学习方式,以探究式学习和有意义接受式学习为指导,引导学生在动手实践、自主探索、合作交流活动中发现新知、发展能力,充分发挥学生的主体作用。教师运用多元的评价对学生适时、有度的激励,帮助学生认识自我,建立自信,以“我要学”的主人翁姿态投入学习,不仅“学会”,而且“会学”、“乐学”。
教学过程分析
1、创设情境,导入新课
新课标指出“对数学的认识应处处着眼于人的发展和现实生活之间的密切联系”。根据这一理念和九年级学生的年龄特点、心理发展规律,联系生活中喜闻乐见的话题,创设有一定挑战性的问题情境,目的在于激发学生的探索激情和求知欲望。
欣赏一段精彩的足球视频。
学生依据自已在体育课上踢球的经验,思考:球员射中球门的难易程度与什么有关?
设计意图:通过设计足球场景,联系中国足球现状,既能对学生进行爱国主义教育,又让学生在两种思维的碰撞中带着悬念进入新课的学习。
2、读书指导,初步认知
1)阅读教材,了解圆周角的概念,根据对概念的理解画圆周角,一学生板演。
设计意图:充分利用教材,学好基础知识、基本概念,培养学生的读书能力和理解力,体现“学生是学习的主人”发挥学生的主体作用,掌握圆周角的定义。
2)巩固练习,看谁最棒。(运用多媒体)
判别下列各图形中的角是不是圆周角。
设计意图:巩固圆周角概念,明确圆周角必须满足两个条件:顶点在圆上,角的两边分别与圆还有一个交点。
3、分组讨论,解决问题
荷兰数学家和数学教育家弗赖登塔尔的“再创造”数学教学模式强调:以学生的独立学习为基础的小组合作,全班交流,教师启导。本活动的
设计让学生有自主探索、合作交流的时间和空间,使学生经历探索圆周角和圆心角的关系的过程,体会由特殊到一般的思想方法。在学生分组探索“圆周角和圆心角的关系”的过程中教师深入课堂对学生适时的点拨、指导。师生互动,彼此形成一个“学习共同体”。1)动手操作,发现规律
请同学们动手画出⊙O中弧AB所对的圆周角和圆心角。各小组总结出一共画了几种不同的情况?小组派代表板演。
设计意图:通过这种具有探索性与挑战性的活动,培养学生独立思考、合作交流的能力,渗透化归思想,初步认识圆周角和圆心角的这三种位置关系。
特别说明:若学生不能准确地归纳出圆周角和圆心角的这三种位置关系,教师可利用几何画板动态演示,让学生在教师的`启发下达成这一教学目标。
量一量弧AB所对的圆周角和圆心角的度数,看看有什么发现?
设计意图:如果直接给出“同弧所对的圆周角是它所对的圆心角的一半”这一结论,学生会感到困惑,而让学生通过动手实践,对圆周角和圆心角度数的观察,自已发现规律,会让学生体验到成功的喜悦,为下面圆周角定理的证明打好桥铺好路。若在测量时没有发现这样的规律也不要紧,教师要对学生的实践过程而不只是对结果进行评价,教师仍可借助几何画板进行说明。
2)团结合作,验证猜想
有了实践的支撑,必须有理论的证明。学生按小组分组合作,自行探讨证明的方法。教师在巡视中若发现某一小组的活动出现了偏差,就深入其中进行引导,大声的进行点拔,让其它学生也能有所启发。学生在充分的合作交流后,已小有收获,于是分小组进行汇报,其它小组进行评价。在汇报的过程中,可能有的组只汇报了一种情况的证明过程,那么别的组就会依据自已的结果进行补充,从而让学生认识圆周角定理需分三种情况逐一证明的必要性。
特别说明:由于“圆心在圆周角的一边上”这种情况,学生完全可以自己通过交流完成,这一步是第二、第三种情况证明的基础,如果对第二、第三种情况没有一个组想到证明的思路,教师就可利用几何画板进行启发,第二、第三种情况是否可转化成第一种情况解决,使学生认识到转化的条件是:加以角的顶点为端点的直径为辅助线。
4、关注差异,分层教学
设计意图:理解巩固“圆周角和圆心角的关系”和它的应用、满足不同层次学生需求,让不同的人在数学上得到不同的发展。
A层:一起试试看(运用多媒体)
1、求圆O中角X的度数?
设计意图:即可巩固圆周角定理,又可培养学生的竞争意识,以适应现代生活的需要。同时,对回答积极准确的同学及时表扬,激发学习的积极性。
B层:再帮一个忙
2、如图,A、B是圆O上的两点,且∠AOB=100°,C是圆O上不与A、B重合的任意一点,求∠ACB的度数。
设计意图:因圆中有关点、线、角的位置关系复杂,学生往往对已知条件分析不够全面,会忽视某个条件,某种特殊情况,导致漏解。采用小组讨论的方式进行,并及时进行小组评价。
C层:请你帮帮我
如图:OA、OB、OC都是⊙O的半径,且∠AOB=2∠BOC
求证:∠ACB=2∠BAC
设计意图:让不同的人在数学上获得不同的发展,使一部分学生通过练习能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。
5、课堂反思,师生小结
学生谈收获和感受,教师小结。(提示学生从三方面入手:①学到了什么知识;②掌握了哪些数学方法;③体会到了哪些数学思想。)(运用多媒体)
设计意图:使学生体验交流的快乐,感受成功的喜悦。使学生对本节内容有一个更系统、更深刻的认识,提高学生自主建构知识网络、解决问题的能力,达到触类旁通。
6、学以致用,作业适量(附:板书设计)
圆周角和圆心角的关系
圆周角概念:探究活动
一条弧所对的圆周角等于它所对的圆心角的一半
数学思想
设计说明
本教学设计突出以下五点:
1、设计足球场景,数学联系生活;
2、加强教材利用,培养读书能力;
3、强化合作意识,创设沟通氛围;
4、电脑辅助教学,课堂轻松简捷;
5、注重因材施教,合理分层教学。