信号与系统重要知识点总结【优选3篇】
信号与系统重要知识点总结 篇一
在学习信号与系统的过程中,有一些重要的知识点需要我们掌握和理解。本文将对其中的一些重要知识点进行总结和归纳。
一、信号的分类
信号可以分为连续信号和离散信号两类。连续信号是指在整个时间范围内都有定义的信号,而离散信号则是只在一些特定时间点上有定义的信号。
二、系统的分类
系统可以分为连续系统和离散系统两类。连续系统是指输入和输出都是连续信号的系统,而离散系统则是输入和输出都是离散信号的系统。
三、线性系统和非线性系统
线性系统具有线性叠加性质,即系统对输入信号的线性组合的响应等于这些输入信号对应的响应的线性组合。非线性系统则不具备这个性质。
四、时不变系统和时变系统
时不变系统是指系统的输出只与输入信号的当前值有关,而与输入信号的时间无关。时变系统则是系统的输出与输入信号的时间有关。
五、冲激响应和单位脉冲响应
冲激响应是指系统对冲激信号的响应,单位脉冲响应是指系统对单位脉冲信号的响应。冲激响应和单位脉冲响应可以通过卷积运算来求得系统的输出。
六、傅里叶变换和拉普拉斯变换
傅里叶变换是将信号从时域转换到频域的一种变换方法,可以将信号分解为不同频率的正弦波的叠加。拉普拉斯变换则是将信号从时域转换到复平面的一种变换方法,可以方便地求解系统的频率响应。
七、采样定理和离散傅里叶变换
采样定理是指在进行离散信号处理时,采样频率要大于信号最高频率的两倍才能保证信号的完整恢复。离散傅里叶变换是将离散信号从时域转换到频域的一种方法。
八、系统的稳定性
系统的稳定性是指当输入信号有界时,系统的输出也是有界的。稳定系统可以分为绝对稳定和相对稳定两类。
九、系统的时域性质和频域性质
系统的时域性质包括冲击响应、单位脉冲响应和零输入响应等,频域性质包括幅频特性、相频特性和群延迟特性等。
十、卷积定理和频域采样定理
卷积定理是指信号的卷积在频域上等于信号的傅里叶变换的乘积。频域采样定理是指在进行频域采样时,采样频率要大于信号最高频率的两倍才能保证信号的完整恢复。
以上是信号与系统的一些重要知识点的总结和归纳。对于学习和理解信号与系统的同学来说,掌握这些知识点是非常重要的,希望本文对大家有所帮助。
信号与系统重要知识点总结 篇二
在信号与系统的学习过程中,有一些重要的知识点需要我们深入了解和掌握。本文将对其中的一些重要知识点进行总结和归纳。
一、信号的表示和性质
信号可以用数学函数来表示,常见的信号有常值信号、正弦信号、方波信号等。信号的性质包括连续性、周期性、能量性和功率性等。
二、系统的表示和性质
系统可以用差分方程或微分方程来表示,常见的系统有线性时不变系统、卷积积分系统等。系统的性质包括因果性、稳定性、线性性和时不变性等。
三、卷积运算和卷积定理
卷积运算是信号处理中常用的运算方法,可以用于求解系统的输出。卷积定理是指信号的卷积在频域上等于信号的傅里叶变换的乘积。
四、傅里叶级数和傅里叶变换
傅里叶级数是将周期信号分解成一系列正弦波的和的方法,傅里叶变换是将非周期信号分解成一系列正弦波的和的方法。傅里叶级数和傅里叶变换可以用于信号的频域分析。
五、拉普拉斯变换和Z变换
拉普拉斯变换是将时域信号转换到复平面的一种方法,可以方便地求解系统的频率响应。Z变换是将离散信号转换到复平面的一种方法,也可以用于求解离散系统的频率响应。
六、系统的频率响应
系统的频率响应描述了系统对不同频率信号的响应情况。常见的频率响应包括幅频特性、相频特性和群延迟特性等。
七、采样定理和离散傅里叶变换
采样定理是指在进行离散信号处理时,采样频率要大于信号最高频率的两倍才能保证信号的完整恢复。离散傅里叶变换是将离散信号从时域转换到频域的一种方法。
八、系统的稳定性
系统的稳定性是指当输入信号有界时,系统的输出也是有界的。稳定系统可以分为绝对稳定和相对稳定两类。
九、系统的时域性质和频域性质
系统的时域性质包括冲击响应、单位脉冲响应和零输入响应等,频域性质包括幅频特性、相频特性和群延迟特性等。
十、系统的实际应用
信号与系统的理论知识可以应用于很多实际问题的建模与求解,如通信系统、控制系统、图像处理等领域。
以上是信号与系统的一些重要知识点的总结和归纳。希望本文对大家在学习和理解信号与系统的过程中有所帮助。
信号与系统重要知识点总结 篇三
信号与系统重要知识点总结
【摘要】需要考信号与系统专业的同学们注意啦,本文整理汇总信号与系统重要知识点供参考。携手大纲解析人第一时间解读大纲,点击免费报名。
第一章信号与系统
1、什么是信号?(了解基本概念)
2、信号的至少五种分类。
3、系统的至少四种分类。
4、信号的基本运算(平移、反转、尺度变换,再取取值区间)。可参考例题:P331.6(2)(4)----画图
5、阶跃函数和冲激函数的定义、性质
6、P25图1.5-3
7、系统的性质P381.24
8、对于动态系统,既具有分解特性、又具有零状态线性和零输入线性,则称为线性系统。
9、在建模方面,系统的数学描述方法可分为哪两大类?输入、输出分析法又可以分成哪两种方法?
10、如果系统在任何时刻的响应(输出信号)仅决定于该时刻的激励(输入信号),而与它过去的历史状况有关,就称其为?如果系统在任意时刻的响应不仅与该时刻的激励有关而且与它过去的历史状况有关,就称之为?
11、周期信号与非周期信号的判断标准。如:
12、当系统的激励是连续信号时,若响应也是连续信号,则称其为??当系统的激励是离散信号时,若其响应也是离散信号,则称其为连续系统与离散系统常混合使用,称为
第二章连续系统的时域分析
1、系统的零状态响应与输入信号有关,而与初始状态无关;系统的零输入响应与初始状态有关,而与输入信号无关。
2、理解什么是冲激响应,什么是阶跃响应,分别用什么符号来表示。(概念上)
3、卷积积分的定义,会求卷积积分(尤其是特殊函数)。如:等公式的的灵活使用。例:例:P812.17(1)、(2)P802.16
4、图示法求解卷积积分。P62例2.3-1(课件)(此次不作为重点)
5、掌握卷积积分的性质。P66-72
6、清楚连续系统时域分析求解的是微分方程。
第三章离散系统的时域分析
1、理解单位序列及其响应的概念。
2、单位序列卷积特性。
3、卷积和的定义及其性质。例:;
4、清楚离散系统时域分析求解的`是差分方程。
5、清楚P88-P90差分方程的齐次解也称为?,特解也称为?稳定系统自由响应也称为?强迫响应也称为?
第四章连续系统的频域分析
1、掌握傅里叶级数展开式。P120-121
2、掌握奇函数、偶函数、奇谐函数傅里叶系数的特点。P2024.10
3、掌握周期矩形脉冲的频谱特点。P129-132(主要是掌握那几个
关键点)(1)周期性信号的频谱特点是离散谱,而非周期性信号的频谱特点是连续谱。
周期信号的频谱包括幅度谱和相位谱。
周期信号频谱的特点包括离散性、谐波性和收敛性。
(2)周期相同的脉冲,相邻谱线间隔相同;脉冲宽度越窄,频谱宽度越宽,频带内所含分量越多。
单个矩形脉冲的频带宽度一般与其脉冲宽度τ有关,τ越大,则频带宽度越窄。
周期性矩形脉冲信号的频谱,脉冲周期T越长,谱线间隔越小。
信号在时域中的扩展对应于其频谱在频域中压缩。
脉冲宽度一定的周期脉冲,周期T愈大,谱线间隔愈小,频谱愈稠密;谱线的幅度愈小。
周期相同的脉冲,相邻谱线间隔相同;脉冲宽度越窄,两零点之间的谱线数目越多,频带内所含分量越多。
周期信号的频带宽度与脉冲宽度成反比。
(3)周期信号的傅里叶变换(或频谱密度函数)有无穷多个冲激函数组成,其强度为各相应幅度的2倍。
(4)由信号的收敛性可知,信号的能量主要集中在低频段。
4、帕斯瓦尔恒等式表明,对于周期信号,在时域中求得的信号功率与在频域中求得的信号功率相等。
5、掌握奇异函数傅里叶变换P138-142
6、掌握奇异函数傅里叶变换的性质P161表4-2P204(尤其像对称性、频域微分性质等)
例:4.18(1)(2),4.20(2)(8)。书上例题
7、正、余弦函数的傅里叶变换;一般周期函数的傅里叶变换公式。
8、系统响应表达式。
9、系统对于信号的作用大体可以分为哪两类?
10、函数与频谱的特点:若函数是偶函数,则其频谱密度函数是的实函数;若函数是奇函数,则其频谱密度函数是的虚函数;若函数是非奇非偶函数,则其频谱密度函数是的复函数。
11、信号无失真传输的条件。(4.8-11b)12.掌握时域取样定理,奈奎斯特频率、周期;若从抽样信号中恢复原信号,则所需低通滤波器的截止频率。例:P2094.48等
第五章连续系统的s域分析
1、拉普拉斯变换的定义。P214式5.1-8、5.1-9(了解)
2、记住常用信号的拉普拉斯变换。注意收敛域。
3、掌握拉普拉斯变换的性质。P231表5-1(简单的)例:P2645.4(3);5.6(若是假分式时,同样会求)
4、掌握拉普拉斯逆变换(部分分式展开法)。例:P2645.8(1)(3)(8)
5、掌握连续系统的复频域分析:由微分方程变为代数方程;系统函数的表达式;系统的s域框图;电路的s域模型。
例:P2675.23;P2695.36;P251例5.4-10
6、用变换域的方法求解微分方程的零输入响应、零状态响应、全响应。P241例5.4-1
第六章离散系统的z域分析
1、z变换的定义。(P2736.1-8(a)(b))
2、记住常用信号的z变换,注意收敛域。(P273式6.1-11、6.1-12等)
3、掌握z变换的性质(尤其是初值终值等)。P292表6-1例:P3206.7,6.8
4、掌握逆z变换(部分分式展开法)。P297例6.3-3
5、s域与z域的对应关系。
第七章系统函数
1、连续系统和离散系统的系统函数的极点与响应函数的关系,以及系统的稳定性的关系。如:H(z)在单位圆内的极点所对应的响应序列都是衰减的,当时,响应趋近于零。极点全部在单位圆内的系统是稳定系统;
H(s)在左半开平面的极点所对应的响应函数都是衰减的,当时,响应函数趋近于零。极点全部在左半开平面的系统是稳定的系统。
2、系统函数的零极点图。
3、连续系统的稳定性准则-罗斯准则。例:
4、离散系统的稳定性准则-朱里准则。例:
5、掌握连续系统的s域分析及离散系统的z域分析:能够根据微分方程或差分方程得到代数方程;根据或写出微分方程或差分方程;给出或,能够能根据梅森公式,准确画出信号流图、系统框图;根据或能够求出冲激响应或单位冲激序列;根据或能够判断是否存在频率响应;根据信号流图得到系统函数;根据框图得到微分方程或差分方程或代数方程等等。(注意:单位圆必须包含在收敛域内才有频率响应)